Машинное обучение 2015 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
(Дополнительные источники)
м (Дополнительные источники по Python)
Строка 62: Строка 62:
  
 
== Дополнительные источники по Python ==
 
== Дополнительные источники по Python ==
 +
* [http://cs231n.github.io/python-numpy-tutorial/ "Python Numpy Tutorial"]
 
* [http://www.cin.ufpe.br/~embat/Python%20for%20Data%20Analysis.pdf "Python for Data Analysis"]
 
* [http://www.cin.ufpe.br/~embat/Python%20for%20Data%20Analysis.pdf "Python for Data Analysis"]
 
* [https://github.com/jrjohansson/scientific-python-lectures#online-read-only-versions "Scientific Python"]
 
* [https://github.com/jrjohansson/scientific-python-lectures#online-read-only-versions "Scientific Python"]

Версия 09:11, 23 марта 2015

Лекции — Екатерина Алексеевна Тузова (kt@jetbrains.com)

Лекции

11 февраля, "Введение"
18 февраля, "Метрические методы классификации"
27 февраля, "Иерархическая кластеризация"
6 марта, "Кластеризация. Графовые и статистические алгоритмы"
13 марта, "Линейные классификаторы"
20 марта, "Метод опорных векторов"

Домашние задания.

Адрес, на который надо присылать решения -- machine.teaching@gmail.com.
В теме письма должно быть написано "Домашняя работа N Иванов", где вместо Иванов надо поставить свою фамилию, а вместо N -- номер домашней работы.

1. Метод наименьших квадратов.
Дедлайн (20 баллов): 18.02.15 23:59
Дедлайн (10 баллов): 25.02.15 23:59

Условие в файле readme по ссылке — Домашнее задание 1

2. Соседи и вино.
Дедлайн (20 баллов): 25.02.15 23:59
Дедлайн (10 баллов): 03.03.15 23:59

Условие — Домашнее задание 2

3. Рибосома и иерархическая кластеризация
Дедлайн (20 баллов): 05.03.15 23:59
Дедлайн (10 баллов): 12.03.15 23:59

Условие — Домашнее задание 3

4. Comic-Con и k-means
Дедлайн (20 баллов): 13.03.15 23:59
Дедлайн (10 баллов): 20.03.15 23:59

Условие — Домашнее задание 4

5. Индейцы пима, диабет и линейный классификатор
Дедлайн (20 баллов): 26.03.15 23:59
Дедлайн (10 баллов): 02.04.15 23:59

Условие — Домашнее задание 5

Летучки в начале лекции.

18 февраля
27 февраля
6 марта
13 марта
20 марта

Результаты

Результаты

Дополнительные источники по машинному обучению

Дополнительные источники по Python