Алгебра, 1 семестр, 2014/15 — различия между версиями
Материал из SEWiki
(→ДЗ на 24.09.) |
(→ДЗ на 24.09.) |
||
Строка 3: | Строка 3: | ||
# Найти минимальное отношение эквивалентности <math>\sim</math>, содержащее данное отношение <math>R</math> (т.е. <math>\sim</math> есть транзитивное замыкание <math>R</math>) и количество элементов в фактормножестве <math>X/\sim</math>. | # Найти минимальное отношение эквивалентности <math>\sim</math>, содержащее данное отношение <math>R</math> (т.е. <math>\sim</math> есть транзитивное замыкание <math>R</math>) и количество элементов в фактормножестве <math>X/\sim</math>. | ||
## <math>X=\mathbb{R}_+</math> (положительные числа); <math>a R b \iff ab(b+1)>a^2+b^3</math> | ## <math>X=\mathbb{R}_+</math> (положительные числа); <math>a R b \iff ab(b+1)>a^2+b^3</math> | ||
− | ## <math>X=\mathbb{Z}</math>; <math>a R b \iff (a-3b) \vdots 121</math> | + | ## <math>X=\mathbb{Z}</math>; <math>a R b \iff (a-3b) \vdots 121</math> (<math>x \vdots b</math> обозначает "<math>x</math> делится на <math>y</math> без остатка") |
# Найти количество отображений <math>f: \{1, 2, 3, \dots , n\} \to \{1, 2, 3, \dots, n\}</math>, обладающих указанными свойствами: | # Найти количество отображений <math>f: \{1, 2, 3, \dots , n\} \to \{1, 2, 3, \dots, n\}</math>, обладающих указанными свойствами: | ||
## <math>f(f(x)) = x</math> при любом x | ## <math>f(f(x)) = x</math> при любом x | ||
## <math>f(f(x)) = 1</math> при любом x. | ## <math>f(f(x)) = 1</math> при любом x. |
Версия 20:34, 22 сентября 2014
ДЗ на 24.09.
- Пусть - множество всех делителей . Обозначим НОД чисел за , а НОК за . Введём отношение эквивалентности: . Сколько элементов в фактормножестве ?
- Найти минимальное отношение эквивалентности , содержащее данное отношение (т.е. есть транзитивное замыкание ) и количество элементов в фактормножестве .
- (положительные числа);
- ; ( обозначает " делится на без остатка")
- Найти количество отображений , обладающих указанными свойствами:
- при любом x
- при любом x.