Алгебра phys 1 апрель–май — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 25: Строка 25:
 
<ul><li>Оператор бемоль (опускание индекса): <math>\biggl(\!\begin{align}\flat_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\!\end{align}\!\biggr)</math>. Опускание индекса в координатах: <math>(\flat_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>(\flat_\sigma v)_j=\sum_{i=1}^nv^i\,\sigma_{i,j}</math>.
 
<ul><li>Оператор бемоль (опускание индекса): <math>\biggl(\!\begin{align}\flat_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\!\end{align}\!\biggr)</math>. Опускание индекса в координатах: <math>(\flat_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>(\flat_\sigma v)_j=\sum_{i=1}^nv^i\,\sigma_{i,j}</math>.
 
<li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\flat_\sigma</math> — биекция<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\mathrm{Ker}\,\flat_\sigma\!=\{0\}</math>. Ранг формы <math>\sigma</math>: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,\flat_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.
 
<li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\flat_\sigma</math> — биекция<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\mathrm{Ker}\,\flat_\sigma\!=\{0\}</math>. Ранг формы <math>\sigma</math>: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,\flat_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.
<li>Топологич. невырожденность (<math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — нормир. вект. пр.-во, <math>\sigma\in\overline{\mathrm{Bi}}(V)\cap\mathrm C^0\!(V\times V,K)</math>): <math>\biggl(\!\begin{align}\flat_\sigma\colon V&\to\overline V^*\!\!\cap\mathrm C^0\!(V,K)\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\!\end{align}\!\biggr)</math> — биекция.
+
<li>Топологическая невырожденность (<math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — нормир. пр.-во, <math>\sigma\in\overline{\mathrm{Bi}}(V)\cap\mathrm C^0\!(V\times V,K)</math>): <math>\biggl(\!\begin{align}\flat_\sigma\colon V&\to\overline V^*\!\!\cap\mathrm C^0\!(V,K)\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\!\end{align}\!\biggr)</math> — биекция.
 
<li>Пример: <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V=\ell^2\!=\bigl\{f\in\mathrm{Func}(\mathbb N,K)\mid\sum_{n=1}^\infty|f_n|^2\!<\infty\bigr\}</math> и <math>\sigma\,\colon(f,g)\mapsto\sum_{n=1}^\infty f_n\overline g_n</math>; тогда <math>\sigma</math> топологич. невырождена (без док.-ва).
 
<li>Пример: <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V=\ell^2\!=\bigl\{f\in\mathrm{Func}(\mathbb N,K)\mid\sum_{n=1}^\infty|f_n|^2\!<\infty\bigr\}</math> и <math>\sigma\,\colon(f,g)\mapsto\sum_{n=1}^\infty f_n\overline g_n</math>; тогда <math>\sigma</math> топологич. невырождена (без док.-ва).
 
<li>Оператор диез (подъем индекса): <math>\sharp^\sigma\!=\flat_\sigma^{-1}</math> (<math>\sigma</math> невырождена). Подъем индекса в коорд. (<math>\sigma^{e,e}=(\sigma_{e,e}^{-1})^\mathtt T</math>): <math>(\sharp^\sigma\lambda)^e=\sigma^{e,e}\!\cdot(\lambda_e)^\mathtt T</math> и <math>(\sharp^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{i,j}\,\lambda_j</math>.
 
<li>Оператор диез (подъем индекса): <math>\sharp^\sigma\!=\flat_\sigma^{-1}</math> (<math>\sigma</math> невырождена). Подъем индекса в коорд. (<math>\sigma^{e,e}=(\sigma_{e,e}^{-1})^\mathtt T</math>): <math>(\sharp^\sigma\lambda)^e=\sigma^{e,e}\!\cdot(\lambda_e)^\mathtt T</math> и <math>(\sharp^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{i,j}\,\lambda_j</math>.
Строка 33: Строка 33:
  
 
<h5>8.4&nbsp; Диагонализация ¯-симметричных ¯-билинейных форм</h5>
 
<h5>8.4&nbsp; Диагонализация ¯-симметричных ¯-билинейных форм</h5>
<ul><li>Ортогональный базис: <math>e\in\mathrm{OOB}(V,\sigma)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица<math>\bigr)</math>. Форма <math>\sigma</math> в ортогональн. коорд. (<math>e\in\mathrm{OOB}(V,\sigma)</math>): <math>\sigma(v,w)=\sum_{i=1}^n\sigma_{i,i}\,v^i\overline{w^i}</math>.
+
<ul><li>Ортогональный базис: <math>e\in\mathrm{OOB}(V,\sigma)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица<math>\bigr)</math>. Форма <math>\sigma</math> в ортогональн. коорд. (<math>e\in\mathrm{OOB}(V,\sigma)</math>): <math>\sigma(v,w)=\sum_{i=1}^n\sigma_{i,i}\,v^i\overline{w^i}{}</math>.
 
<li>Ортонормированный базис (<math>K=\mathbb R</math> или <math>K=\mathbb C</math>): <math>e\in\mathrm{OnOB}(V,\sigma)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица с <math>1,\ldots,1,-1,\ldots,-1,0,\ldots,0</math> на диагонали<math>\bigr)</math>.
 
<li>Ортонормированный базис (<math>K=\mathbb R</math> или <math>K=\mathbb C</math>): <math>e\in\mathrm{OnOB}(V,\sigma)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица с <math>1,\ldots,1,-1,\ldots,-1,0,\ldots,0</math> на диагонали<math>\bigr)</math>.
 
<li><u>Лемма о неизотропном векторе.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\sigma\in\overline\mathrm{SBi}(V)\!\setminus\!\{0\}</math>;<br>тогда существует такой вектор <math>v\in V</math>, что <math>\sigma(v,v)\ne0</math> (то есть существует неизотропный вектор).</i>
 
<li><u>Лемма о неизотропном векторе.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\sigma\in\overline\mathrm{SBi}(V)\!\setminus\!\{0\}</math>;<br>тогда существует такой вектор <math>v\in V</math>, что <math>\sigma(v,v)\ne0</math> (то есть существует неизотропный вектор).</i>
Строка 72: Строка 72:
 
<li>Каноническая форма объема в псевдоевкл. пр.-ве с ориентацией (<math>e\in\mathrm{OB}(V)</math>): <math>\mathrm{vol}=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\,\mathrm{vol}^e</math>; если <math>e\in\mathrm{OnOB}_{>0}(V)</math>, то <math>\mathrm{vol}=\mathrm{vol}^e</math>.
 
<li>Каноническая форма объема в псевдоевкл. пр.-ве с ориентацией (<math>e\in\mathrm{OB}(V)</math>): <math>\mathrm{vol}=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\,\mathrm{vol}^e</math>; если <math>e\in\mathrm{OnOB}_{>0}(V)</math>, то <math>\mathrm{vol}=\mathrm{vol}^e</math>.
 
<li>Корректность опр.-я объема. Объем в коорд.: <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\varepsilon_{j_1,\ldots,j_n}v_1^{j_1}\!\cdot\ldots\cdot v_n^{j_n}</math>. Лемма об объеме и матрице Грама.
 
<li>Корректность опр.-я объема. Объем в коорд.: <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\varepsilon_{j_1,\ldots,j_n}v_1^{j_1}\!\cdot\ldots\cdot v_n^{j_n}</math>. Лемма об объеме и матрице Грама.
<p><u>Лемма об объеме и матрице Грама.</u> <i>Пусть <math>V</math> — псевдоевклидово пространство с ориентацией, <math>\sigma=(\,\mid\,)</math>, <math>n=\dim V</math> и <math>v_1,\ldots,v_n\in V</math>; тогда<br>(1) <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|\det\sigma_{(v_1,\ldots,v_n),(v_1,\ldots,v_n)}|}{}</math>;<br>(2) если векторы <math>v_1,\ldots,v_n</math> попарно ортогональны, то <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|(v_1\!\mid\!v_1)|}\cdot\ldots\cdot\!\sqrt{|(v_n\!\mid\!v_n)|}</math>.</i></p>
+
<p><u>Лемма об объеме и матрице Грама.</u> <i>Пусть <math>V</math> — псевдоевклидово пространство с ориентацией, <math>\sigma=(\,\mid\,)</math>, <math>n=\dim V</math> и <math>v_1,\ldots,v_n\in V</math>; тогда<br>(1) <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|\det\sigma_{(v_1,\ldots,v_n),(v_1,\ldots,v_n)}|}{}</math>;<br>(2) если векторы <math>v_1,\ldots,v_n</math> попарно ортогональны, то <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|(v_1\!\mid\!v_1)|}\cdot\ldots\cdot\!\sqrt{|(v_n\!\mid\!v_n)|}{}</math>.</i></p>
 
<li>Неотриц. объем в евкл. пр.-ве: <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=|\mathrm{vol}(v_1,\ldots,v_m)|</math> в <math>\langle v_1,\ldots,v_m\rangle</math>, если <math>v_1,\ldots,v_m</math> независимы; иначе <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=0</math>.
 
<li>Неотриц. объем в евкл. пр.-ве: <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=|\mathrm{vol}(v_1,\ldots,v_m)|</math> в <math>\langle v_1,\ldots,v_m\rangle</math>, если <math>v_1,\ldots,v_m</math> независимы; иначе <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=0</math>.
 
<li><u>Теорема о неотрицательном объеме в евклидовом пространстве.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\sigma=(\,\mid\,)</math>,  
 
<li><u>Теорема о неотрицательном объеме в евклидовом пространстве.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\sigma=(\,\mid\,)</math>,  
Строка 83: Строка 83:
 
<h5>10.1&nbsp; Определения и конструкции, связанные с алгебрами</h5>
 
<h5>10.1&nbsp; Определения и конструкции, связанные с алгебрами</h5>
 
<ul><li><math>K</math>-Алгебра — вект. пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из <math>K</math>.
 
<ul><li><math>K</math>-Алгебра — вект. пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из <math>K</math>.
<li>Примеры: <math>\mathrm{Func}(X,K)</math>, <math>K[x]</math>, <math>K(x)</math>, <math>\mathrm{Mat}(n,K)</math>, <math>\mathrm{End}(V)</math>; <math>\mathbb R</math>-алгебры <math>\mathbb C</math>, <math>\mathbb H</math>, <math>\mathrm C^0\!(X,\mathbb R)</math>, <math>\mathrm C^\infty\!(M,\mathbb R)</math>. Структурн. константы алгебры: <math>m^i_{j_1,j_2}\!\!=(e_{j_1}e_{j_2})^i</math>.
+
<li>Примеры: <math>\mathrm{Func}(X,K)</math>, <math>K[x]</math>, <math>K(x)</math>, <math>\mathrm{Mat}(n,K)</math>, <math>\mathrm{End}(V)</math>; <math>\mathbb R</math>-алгебры <math>\mathbb C</math>, <math>\mathbb H</math>, <math>\mathrm C^0\!(X,\mathbb R)</math>, <math>\mathrm C^\infty\!(M,\mathbb R)</math>. Структурн. константы алгебры: <math>m^i_{j_1,j_2}\!\!=(e_{j_1}e_{j_2})^i{}</math>.
 
<li>Теорема Кэли для ассоциативных алгебр с <math>1</math>. Инъект. гомоморфизмы <math>\mathbb R</math>-алгебр: <math>\biggl(\!\begin{align}\mathbb C&\to\mathrm{Mat}(2,\mathbb R)\,\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathbb H&\to\mathrm{Mat}(2,\mathbb C)\\\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k&\mapsto\!\Bigl(\begin{smallmatrix}\alpha+\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&\alpha-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math>.
 
<li>Теорема Кэли для ассоциативных алгебр с <math>1</math>. Инъект. гомоморфизмы <math>\mathbb R</math>-алгебр: <math>\biggl(\!\begin{align}\mathbb C&\to\mathrm{Mat}(2,\mathbb R)\,\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathbb H&\to\mathrm{Mat}(2,\mathbb C)\\\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k&\mapsto\!\Bigl(\begin{smallmatrix}\alpha+\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&\alpha-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math>.
 
<p><u>Теорема Кэли для ассоциативных алгебр с 1.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство<br>над полем <math>K</math>, получающееся из алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_a</math> отображ.-е <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\,b\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_a</math> — линейный оператор (то есть <math>\mathrm{lm}_a\!\in\mathrm{End}({}_K\!A)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}A&\to\mathrm{End}({}_K\!A)\\a&\mapsto\mathrm{lm}_a\end{align}\!\biggr)</math> — инъективный гомоморфизм алгебр с <math>1</math>.</i></p>
 
<p><u>Теорема Кэли для ассоциативных алгебр с 1.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство<br>над полем <math>K</math>, получающееся из алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_a</math> отображ.-е <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\,b\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_a</math> — линейный оператор (то есть <math>\mathrm{lm}_a\!\in\mathrm{End}({}_K\!A)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}A&\to\mathrm{End}({}_K\!A)\\a&\mapsto\mathrm{lm}_a\end{align}\!\biggr)</math> — инъективный гомоморфизм алгебр с <math>1</math>.</i></p>
Строка 98: Строка 98:
 
<li>Матричные алгебры Ли: <math>\mathfrak{gl}(n,K)</math>, <math>\mathfrak{sl}(n,K)</math>, <math>\mathfrak o(n)=\mathfrak{so}(n)=\{a\in\mathfrak{gl}(n,\mathbb R)\mid a^\mathtt T\!=-a\}</math>, <math>\mathfrak u(n)=\{a\in\mathfrak{gl}(n,\mathbb C)\mid a^\mathtt T\!=-\overline a\}{}</math>,  
 
<li>Матричные алгебры Ли: <math>\mathfrak{gl}(n,K)</math>, <math>\mathfrak{sl}(n,K)</math>, <math>\mathfrak o(n)=\mathfrak{so}(n)=\{a\in\mathfrak{gl}(n,\mathbb R)\mid a^\mathtt T\!=-a\}</math>, <math>\mathfrak u(n)=\{a\in\mathfrak{gl}(n,\mathbb C)\mid a^\mathtt T\!=-\overline a\}{}</math>,  
 
<math>\mathfrak{su}(n)=\mathfrak{sl}(n,\mathbb C)\cap\mathfrak u(n)</math>.
 
<math>\mathfrak{su}(n)=\mathfrak{sl}(n,\mathbb C)\cap\mathfrak u(n)</math>.
<li><u>Теорема о группах матриц и матричных алгебрах Ли.</u> <i>Пусть <math>\alpha\in[-\infty;0){}</math>, <math>\beta\in(0;\infty]{}</math>, <math>n\in\mathbb N_0</math>, <math>\gamma\in\mathrm C^\infty\!((\alpha;\beta),\mathrm{Mat}(n,\mathbb C)){}</math> и <math>\gamma(0)=\mathrm{id}_n</math>; тогда<br>(1) если <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm{SL}(n,\mathbb R){}</math>, то <math>\dot\gamma(0)\in\mathfrak{sl}(n,\mathbb R){}</math>, и, если <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm{SL}(n,\mathbb C){}</math>, то <math>\dot\gamma(0)\in\mathfrak{sl}(n,\mathbb C){}</math>;<br>(2) если <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm{SO}(n){}</math>, то <math>\dot\gamma(0)\in\mathfrak{so}(n){}</math>, а также, если <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm{U}(n){}</math>, то <math>\dot\gamma(0)\in\mathfrak u(n){}</math>, и, если <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm{SU}(n){}</math>, то <math>\dot\gamma(0)\in\mathfrak{su}(n){}</math>.</i>
+
<li><u>Теорема о группах матриц и матричных алгебрах Ли.</u> <i>Пусть <math>\alpha\in[-\infty;0){}</math>, <math>\beta\in(0;\infty]{}</math>, <math>n\in\mathbb N_0</math>, <math>\gamma\in\mathrm C^\infty\!((\alpha;\beta),\mathrm{Mat}(n,\mathbb C)){}</math> и <math>\gamma(0)=\mathrm{id}_n{}</math>; тогда<br>(1) если <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm{SL}(n,\mathbb R){}</math>, то <math>\dot\gamma(0)\in\mathfrak{sl}(n,\mathbb R){}</math>, и, если <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm{SL}(n,\mathbb C){}</math>, то <math>\dot\gamma(0)\in\mathfrak{sl}(n,\mathbb C){}</math>;<br>(2) если <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm{SO}(n){}</math>, то <math>\dot\gamma(0)\in\mathfrak{so}(n){}</math>, а также, если <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm U(n){}</math>, то <math>\dot\gamma(0)\in\mathfrak u(n){}</math>, и, если <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm{SU}(n){}</math>, то <math>\dot\gamma(0)\in\mathfrak{su}(n){}</math>.</i>
 
<li>Теорема Кэли для алгебр Ли. Изоморфизмы <math>\mathbb R</math>-алгебр Ли: <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathfrak{so}(3)\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto\!\biggl(\begin{smallmatrix}0&-\delta&\gamma\\\delta&0&-\beta\\-\gamma&\beta&0\end{smallmatrix}\biggr)\end{align}\!\Biggr)</math>, <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathbb H_\mathrm{vect}\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto{\textstyle\frac12}(\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k)\end{align}\!\Biggr)</math> и <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathfrak{su}(2)\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto{\textstyle\frac12}\Bigl(\begin{smallmatrix}\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\Biggr)</math>.
 
<li>Теорема Кэли для алгебр Ли. Изоморфизмы <math>\mathbb R</math>-алгебр Ли: <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathfrak{so}(3)\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto\!\biggl(\begin{smallmatrix}0&-\delta&\gamma\\\delta&0&-\beta\\-\gamma&\beta&0\end{smallmatrix}\biggr)\end{align}\!\Biggr)</math>, <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathbb H_\mathrm{vect}\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto{\textstyle\frac12}(\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k)\end{align}\!\Biggr)</math> и <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathfrak{su}(2)\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto{\textstyle\frac12}\Bigl(\begin{smallmatrix}\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\Biggr)</math>.
 
<p><u>Теорема Кэли для алгебр Ли.</u> <i>Пусть <math>K</math> — поле и <math>\mathfrak g</math> — <math>K</math>-алгебра Ли; обозначим через <math>{}_K\mathfrak g</math> векторное пространство над полем <math>K</math>, получающееся<br>из алгебры <math>\mathfrak g</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in\mathfrak g</math>, обозначая через <math>\mathrm{ad}_a</math> отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak g\\b&\mapsto[a,b]\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{ad}_a</math> — линейный оператор (то есть <math>\mathrm{ad}_a\!\in\mathfrak{gl}({}_K\mathfrak g)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak{gl}({}_K\mathfrak g)\\a&\mapsto\mathrm{ad}_a\end{align}\!\biggr)</math> — гомоморфизм алгебр Ли.</i></p>
 
<p><u>Теорема Кэли для алгебр Ли.</u> <i>Пусть <math>K</math> — поле и <math>\mathfrak g</math> — <math>K</math>-алгебра Ли; обозначим через <math>{}_K\mathfrak g</math> векторное пространство над полем <math>K</math>, получающееся<br>из алгебры <math>\mathfrak g</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in\mathfrak g</math>, обозначая через <math>\mathrm{ad}_a</math> отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak g\\b&\mapsto[a,b]\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{ad}_a</math> — линейный оператор (то есть <math>\mathrm{ad}_a\!\in\mathfrak{gl}({}_K\mathfrak g)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak{gl}({}_K\mathfrak g)\\a&\mapsto\mathrm{ad}_a\end{align}\!\biggr)</math> — гомоморфизм алгебр Ли.</i></p>
 
<li>Алгебра дифференцирований <math>K</math>-алгебры <math>A</math>: <math>\mathrm{Der}(A)=\{d\in\mathfrak{gl}({}_K\!A)\mid\forall\,a,b\in A\;\bigl(d(a\,b)=d(a)\,b+a\,d(b)\bigr)\}</math> — подалгебра алгебры Ли <math>\mathfrak{gl}({}_K\!A)</math>.
 
<li>Алгебра дифференцирований <math>K</math>-алгебры <math>A</math>: <math>\mathrm{Der}(A)=\{d\in\mathfrak{gl}({}_K\!A)\mid\forall\,a,b\in A\;\bigl(d(a\,b)=d(a)\,b+a\,d(b)\bigr)\}</math> — подалгебра алгебры Ли <math>\mathfrak{gl}({}_K\!A)</math>.
<li>Пример: пусть <math>M</math> — открытое подмнож.-во в <math>\mathbb R^n</math> и <math>v\in\mathrm C^\infty\!(M,\mathbb R^n)</math>; тогда <math>\Biggl(\begin{align}\mathrm C^\infty\!(M,\mathbb R)&\to\mathrm C^\infty\!(M,\mathbb R)\\f&\mapsto\sum_{i=1}^nv^i\frac{\partial f}{\partial x^i}\end{align}\Biggr)</math> — дифференцирование алгебры <math>\mathrm C^\infty\!(M,\mathbb R)</math>.</ul>
+
<li>Пример: пусть <math>M</math> — открытое множество в <math>\mathbb R^n</math> и <math>v\in\mathrm C^\infty\!(M,\mathbb R^n)</math>; тогда <math>\Biggl(\begin{align}\mathrm C^\infty\!(M,\mathbb R)&\to\mathrm C^\infty\!(M,\mathbb R)\\f&\mapsto\sum_{i=1}^nv^i\frac{\partial f}{\partial x^i}\end{align}\Biggr)</math> — дифференцирование алгебры <math>\mathrm C^\infty\!(M,\mathbb R)</math>.</ul>

Версия 15:00, 10 августа 2018

Подробный план второй половины второго семестра курса алгебры

8   Векторные пространства с ¯-билинейной формой

8.1  ¯-Билинейные формы
  • Пространство билинейных форм: . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
  • Матрица Грама формы : . Обобщенная матрица Грама: . Теорема о матрице Грама.

    Теорема о матрице Грама. Пусть — поле с инволюцией, — вект. простр.-во над полем , , и ; тогда
    (1) для любых выполнено (координаты вычисляются относительно );
    (2) для любых и выполнено .

  • Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
  • Пр.-ва ¯-симметричных форм и матриц: и .
  • Пр.-ва ¯-антисимм. форм и матриц: и .
  • Гомоморфизмы между простр.-вами с ¯-билинейной формой: .
  • Изоморфизмы между пр.-вами с формой: и .
8.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем следующие факты:
    — симметричная билинейная форма (то есть ), а также ;
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем
    следующие факты: — полуторалинейная форма (то есть ), а также ;
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Гиперповерхность второго порядка в пространстве : множество вида , где , и .
  • Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
8.3  Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
  • Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
  • Случай : невырождена — биекция. Ранг формы : . Утверждение: .
  • Топологическая невырожденность ( или , — нормир. пр.-во, ): — биекция.
  • Пример: или , и ; тогда топологич. невырождена (без док.-ва).
  • Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
  • Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , и
    ; тогда , если и только если и форма невырождена.
  • Ортогональные векторы (): . Ортогональное дополнение: .
  • Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
    (1) , , и ;
    (2) если и форма невырождена, то , а также и ;
    (3) и, если , то форма невырождена;
    (4) если форма невырождена, то (и, значит, определен ортогональный проектор на : ).
8.4  Диагонализация ¯-симметричных ¯-билинейных форм
  • Ортогональный базис: — диагональная матрица. Форма в ортогональн. коорд. (): .
  • Ортонормированный базис ( или ): — диагональная матрица с на диагонали.
  • Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
    тогда существует такой вектор , что (то есть существует неизотропный вектор).
  • Теорема Лагранжа. Матричная формулировка теоремы Лагранжа. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.

    Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
    (1) в пространстве существует ортогональный базис (то есть );
    (2) если или , то в пространстве существует ортонормированный базис (то есть ).

    Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
    (1) существует такая матрица , что — диагональная матрица;
    (2) если или , то сущ.-т такая матрица , что — диаг. матрица с на диагонали.

  • Лемма об ортогональном проекторе. Пусть — поле с инволюцией, — вект. пр.-во над , , , , ,
    форма невырождена и ; тогда и, если , то
    .
  • Лемма об определителе матрицы Грама. Пусть — поле с инволюцией, — вект. простр.-во над полем , , , ,
    , форма невырождена и ; тогда .
  • Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
    и ; для любых обозначим через пространство и обозначим через -й угловой минор
    матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
    обозначим через вектор . Тогда для любых выполнено и ,
    а также (это индуктивная формула для нахождения векторов ).
  • Ортогонал. системы функций: и (), (), многочлены Лежандра, Чебышёва, Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).

9   Геометрия в векторных пространствах над или

9.1  Положительно и отрицательно определенные формы и сигнатура формы
  • Мн.-ва положительно и отрицательно определенных форм: и .
  • Мн.-ва полож. и отриц. опред. матриц: и .
  • Следствия из теоремы об ортогональном дополнении и теоремы Лагранжа. Пусть или , — вект. пр.-во над и ; тогда
    (1) если и , то и, если , то форма невырождена и ;
    (2) если , то , если и только если ;
    (3) если и , то , если и только если .
  • Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
    для любых обозначим через -й угловой минор матрицы ; тогда
    (1) , если и только если ;
    (2) , если и только если .
  • Индексы инерции формы : и .
  • Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
    (1) (и, значит, число не зависит от );
    (2) (и, значит, число не зависит от );
    (3) .
  • Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
    и ; тогда , если и только если , и .
  • Сигнатура формы : (или ). Исследование кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
9.2  Предгильбертовы пространства
  • Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
  • Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
  • Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
  • Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
    (1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
    (2) для любых выполнено (это неравенство треугольника);
    (3) если , то для любых и выполнено и (это равенство Парсеваля).
  • Метрика: . Расст. между подмн.-вами: . Теорема о расстояниях и проектировании.

    Теорема о расстояниях и проектировании. Пусть — предгильбертово пространство и ; тогда
    (1) для любых выполнено ;
    (2) если , то для любых выполнено ;
    (3) если , то и для любых выполнено ;
    (4) если , то для любых и выполнено и (это нерав.-во Бесселя).

  • Метод наименьших квадратов: замена системы , где , и , на систему .
  • Угол между векторами и между вектором и подпр.-вом (, , , ): и .
  • Псевдоевклидовопсевдоунитарное пр.-во сигнатуры — кон.-мерн. вект. пр.-во над с невыр. ¯-симметр. ¯-билин. формой сигнатуры .
9.3  Ориентация, объем, векторное произведение
  • Отн.-е одинак. ориентированности ( — кон.-мерн. в. пр. над , ): . Утверждение: .
  • Ориентация пр.-ва — выбор эл.-та мн.-ва . Знак набора векторов: . Теорема о знаке базиса и формах объема.

    Теорема о знаке базиса и формах объема. Пусть — векторное простр.-во с ориентацией и ; тогда для любых выполнено
    , а также множество , равное , не зависит от выбора базиса .

  • Каноническая форма объема в псевдоевкл. пр.-ве с ориентацией (): ; если , то .
  • Корректность опр.-я объема. Объем в коорд.: . Лемма об объеме и матрице Грама.

    Лемма об объеме и матрице Грама. Пусть — псевдоевклидово пространство с ориентацией, , и ; тогда
    (1) ;
    (2) если векторы попарно ортогональны, то .

  • Неотриц. объем в евкл. пр.-ве: в , если независимы; иначе .
  • Теорема о неотрицательном объеме в евклидовом пространстве. Пусть — евклидово пространство, , и ; тогда
    (1) ;
    (2) если , то .
  • Вект. произв. в псевдоевкл. пр.-ве с ориент.: ().
  • Векторное произведение в коорд.: . Теорема о векторном произведении.

    Теорема о векторном произведении. Пусть — евклидово пространство с ориентацией, , и ; тогда
    (1) след. утв.-я эквивалентны: (у1) векторы независимы, (у2) и (у3) ;
    (2) и ;
    (3) для любых выполнено ;
    (4) если , то для любых выполнено и .

10   Алгебры

10.1  Определения и конструкции, связанные с алгебрами
  • -Алгебра — вект. пространство над с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из .
  • Примеры: , , , , ; -алгебры , , , . Структурн. константы алгебры: .
  • Теорема Кэли для ассоциативных алгебр с . Инъект. гомоморфизмы -алгебр: и .

    Теорема Кэли для ассоциативных алгебр с 1. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство
    над полем , получающееся из алгебры при «забывании» умножения в этой алгебре; тогда
    (1) для любых , обозначая через отображ.-е , имеем следующий факт: — линейный оператор (то есть );
    (2) отображение — инъективный гомоморфизм алгебр с .

  • Алгебра с делением: и . Примеры: , ; -алгебры с делением , и алгебра октонионов (октав) .
  • Моноидная алгебра ( — моноид): ; общий вид эл.-та: (); умнож.-е в : свертка.
  • Алгебра многочленов от свободн. переменных: . Одночлены: . Степень. Однородные многочлены.
  • Алгебра многочленов от комм. перем.: . Одночлены: (). Степень. Однор. многочлены.
  • Алгебра многочленов от антикомм. перем.: .
10.2  Алгебры Ли (основные определения и примеры)
  • -Алгебра Ли — -алгебра, умножение в которой антисимметрично () и удовлетв.-т тождеству Якоби ().
  • Коммутатор эл.-тов ассоциативной алгебры: . Алгебра : вект. простр.-во с операцией . Утверждение: — алгебра Ли.
  • Примеры: , , трехмерн. евклид. пр.-во с ориент. относ.-но , — подалгебра алгебры Ли .
  • Матричные алгебры Ли: , , , , .
  • Теорема о группах матриц и матричных алгебрах Ли. Пусть , , , и ; тогда
    (1) если , то , и, если , то ;
    (2) если , то , а также, если , то , и, если , то .
  • Теорема Кэли для алгебр Ли. Изоморфизмы -алгебр Ли: , и .

    Теорема Кэли для алгебр Ли. Пусть — поле и -алгебра Ли; обозначим через векторное пространство над полем , получающееся
    из алгебры при «забывании» умножения в этой алгебре; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор (то есть );
    (2) отображение — гомоморфизм алгебр Ли.

  • Алгебра дифференцирований -алгебры : — подалгебра алгебры Ли .
  • Пример: пусть — открытое множество в и ; тогда — дифференцирование алгебры .