Алгебра phys 2 сентябрь–октябрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 96: | Строка 96: | ||
<h3>13 Многообразия (часть 1)</h3> | <h3>13 Многообразия (часть 1)</h3> | ||
<h5>13.1 Определения и конструкции, связанные с многообразиями</h5> | <h5>13.1 Определения и конструкции, связанные с многообразиями</h5> | ||
− | <ul><li><math>n</math>-Мерная система координат на топол. пр.-ве <math>M</math> — гомеоморфизм между | + | <ul><li><math>n</math>-Мерная система координат на топол. пр.-ве <math>M</math> — гомеоморфизм между откр. мн.-вами в <math>M</math> и <math>\mathbb R^n</math>; отн.-е согласованности: <math>\tilde\xi\circ\xi^{-1}</math> — диффеоморфизм. |
<li><math>n</math>-Мерный атлас на <math>M</math> — множество попарно согласованных <math>n</math>-мерных систем координат на <math>M</math>, области определения которых покрывают <math>M</math>. Примеры. | <li><math>n</math>-Мерный атлас на <math>M</math> — множество попарно согласованных <math>n</math>-мерных систем координат на <math>M</math>, области определения которых покрывают <math>M</math>. Примеры. | ||
− | <li><math>n</math>-Мерное многообразие <math>M</math> — хаусдорфово топол. пр.-во | + | <li><math>n</math>-Мерное многообразие <math>M</math> — хаусдорфово со счетной базой топол. пр.-во <math>M</math> с максимальным <math>n</math>-мерным атласом <math>\mathcal A</math>. Примеры: <math>\mathbb R^n</math>, откр. мн.-ва в <math>\mathbb R^n</math>, <math>\mathrm S^n</math>. |
− | <li> | + | <li>Отобр. <math>\varphi</math> между многообр. <math>M</math> и <math>P</math> гладкое в <math>m</math>, если существ. такие <math>\xi\in\mathcal A{}</math> и <math>\rho\in\mathcal D{}</math>, что <math>m\in\mathrm{Dom}\,\xi{}</math>, <math>\varphi(m)\in\mathrm{Dom}\,\rho{}</math> и отобр. <math>\rho\circ\varphi\circ\xi^{-1}\!</math> гладкое в <math>\xi(m)</math>. |
− | <li>Утверждение: <i>гладкость | + | <li>Утверждение: <i>гладкость отображения не зависит от выбора систем координат</i>. Мн.-во гладких отображений между многообр.-ми <math>M</math> и <math>P</math>: <math>\mathrm C^\infty\!(M,P)</math>. |
− | <li> | + | <li><math>\mathrm{Curv}_m(M)=\!\!\!\!\bigcup_{\alpha\in[-\infty;0),\,\beta\in(0;\infty]}\!\!\!\{\gamma\in\mathrm C^\infty\!((\alpha;\beta),M)\mid\gamma(0)=m\}{}</math> — множество кривых, проходящих через <math>m</math>. <math>\mathrm C^\infty\!(M)=\mathrm C^\infty\!(M,\mathbb R){}</math> — <math>\mathbb R</math>-алгебра функций. |
− | <li>Скорость в координатах (<math>-\infty\le\alpha<\tau<\beta\le\infty</math>, <math>\gamma\in\mathrm C^\infty\!((\alpha;\beta),M)</math>, <math>\xi\in\mathcal | + | <li>Скорость в координатах (<math>-\infty\le\alpha<\tau<\beta\le\infty</math>, <math>\gamma\in\mathrm C^\infty\!((\alpha;\beta),M)</math>, <math>\xi\in\mathcal A</math>, <math>\gamma(\tau)\in\mathrm{Dom}\,\xi{}</math>): <math>\dot\gamma(\tau)^\xi=(\xi\circ\gamma)\!\dot{\phantom i}\!(\tau){}</math> и <math>\dot\gamma(\tau)^i=(\dot\gamma(\tau)^\xi)^i=\bigl((\xi\circ\gamma)^i\bigr)\!\dot{\phantom i}\!(\tau){}</math>. |
− | <li> | + | <li>Обозн.-я: <math>\xi(m)=(x^1(m),\ldots,x^n(m))</math> и <math>\mathrm c_\xi^\tilde\xi(m)=\mathrm d(\tilde\xi\circ\xi^{-1})(\xi(m)){}</math>; тогда <math>\mathrm c_\xi^\tilde\xi(m)\in\mathrm{GL}(n,\mathbb R){}</math> и <math>\mathrm c_\xi^\tilde\xi(m)_k^\tilde i=\frac{\partial x^\tilde i}{\partial x^k}(\xi(m)){}</math>. Лемма о замене координат. |
− | <p><u>Лемма о замене координат.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math>, <math>m\in M</math>, <math>\gamma\in\mathrm{Curv}_m(M)</math> | + | <p><u>Лемма о замене координат.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math>, <math>m\in M</math>, <math>\gamma\in\mathrm{Curv}_m(M)</math>, <math>\xi,\tilde\xi\in\mathcal A{}</math> и <math>m\in\mathrm{Dom}\,\xi\cap\mathrm{Dom}\,\tilde\xi{}</math>; тогда<br>(1) <math>\dot\gamma(0)^\tilde\xi=\mathrm c_\xi^\tilde\xi(m)\cdot\dot\gamma(0)^\xi{}</math> (это матричная запись) и <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(\dot\gamma(0)^\tilde i=\sum_{k=1}^n\frac{\partial x^\tilde i}{\partial x^k}(\xi(m))\,\dot\gamma(0)^k\Bigr){}</math> (это покомпонентная запись);<br>(2) для любых <math>\breve\gamma\in\mathrm{Curv}_m(M)</math> выполнено <math>\dot\gamma(0)^\xi=\dot{\breve\gamma}(0)^\xi\,\Leftrightarrow\,\dot\gamma(0)^\tilde\xi=\dot{\breve\gamma}(0)^\tilde\xi\!{}</math> (то есть равенство скоростей не зависит от выбора систем координат).</i></p></ul> |
<h5>13.2 Касательные пространства и кокасательные пространства</h5> | <h5>13.2 Касательные пространства и кокасательные пространства</h5> | ||
− | <ul><li> | + | <ul><li>Отнош.-е касания в <math>m</math> (<math>\gamma,\breve\gamma\in\mathrm{Curv}_m(M)</math>): <math>\gamma\underset{\scriptscriptstyle m}\sim\breve\gamma\,\Leftrightarrow\,\exists\,\xi\in\mathcal A\;\bigl(m\in\mathrm{Dom}\,\xi\,\land\,\dot\gamma(0)^\xi=\dot{\breve\gamma}(0)^\xi\bigr){}</math>; инвариантная скорость: <math>\dot\gamma(0)=[\gamma]_\underset{\scriptscriptstyle m}\sim\!\in\mathrm{Curv}_m(M)/\!\underset{\scriptscriptstyle m}\sim\!{}</math>. |
− | <li>Касательное пр.-во в точке <math>m</math>: <math>\mathrm T_mM=\mathrm{Curv}_m(M)/\!\underset{\scriptscriptstyle m}\sim</math>. Базисные векторы, | + | <li>Касательное пр.-во в точке <math>m</math>: <math>\mathrm T_mM=\mathrm{Curv}_m(M)/\!\underset{\scriptscriptstyle m}\sim</math>. Базисные векторы, определяемые системой коорд. <math>\xi</math>: <math>\frac\partial{\partial x^i}(m)=\bigl(\tau\mapsto\xi^{-1}(\xi(m)+\tau\,\mathbf e_i)\bigr)\!\dot{\phantom i}\!(0){}</math>. |
<li>Теорема о касательном пространстве. Преобразования при замене координат на <math>M</math>: <math>v^\tilde i=\sum_{k=1}^n\frac{\partial x^\tilde i}{\partial x^k}(\xi(m))\,v^k</math> и <math>\frac\partial{\partial x^\tilde i}(m)=\sum_{k=1}^n\frac{\partial x^k}{\partial x^\tilde i}(\tilde\xi(m))\,\frac\partial{\partial x^k}(m)</math>. | <li>Теорема о касательном пространстве. Преобразования при замене координат на <math>M</math>: <math>v^\tilde i=\sum_{k=1}^n\frac{\partial x^\tilde i}{\partial x^k}(\xi(m))\,v^k</math> и <math>\frac\partial{\partial x^\tilde i}(m)=\sum_{k=1}^n\frac{\partial x^k}{\partial x^\tilde i}(\tilde\xi(m))\,\frac\partial{\partial x^k}(m)</math>. | ||
− | <p><u>Теорема о касательном пространстве.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math>, <math>m\in M</math> | + | <p><u>Теорема о касательном пространстве.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math>, <math>m\in M</math>, <math>\xi\in\mathcal A{}</math> и <math>m\in\mathrm{Dom}\,\xi{}</math>; тогда<br>(1) для любых <math>v\in\mathrm T_mM</math>, выбирая такую кривую <math>\gamma\in\mathrm{Curv}_m(M)</math>, что <math>v=\dot\gamma(0){}</math>, и обозначая через <math>v^\xi</math> столбец <math>\dot\gamma(0)^\xi{}</math>, имеем следующий факт:<br>столбец <math>v^\xi</math> не зависит от выбора кривой <math>\gamma</math>;<br>(2) отображение <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathbb R^n\\v&\mapsto v^\xi\end{align}\!\biggr)</math> — биекция; определим на <math>\,\mathrm T_mM</math> структуру вект. простр.-ва над <math>\,\mathbb R</math> так, чтобы эта биекция стала изоморфизмом<br>вект. простр.-в (то есть <math>\forall\,v,w\in\mathrm T_mM,\,c,d\in\mathbb R\;\bigl((c\,v+d\,w)^\xi=c\,v^\xi+d\,w^\xi\bigr)</math>); тогда эта структура не зависит от выбора системы координат <math>\xi</math>;<br>(3) множество <math>\Bigl\{\frac\partial{\partial x^1}(m),\ldots,\frac\partial{\partial x^n}(m)\Bigr\}</math> — базис пространства <math>\,\mathrm T_mM</math>;<br>(4) для любых <math>v\in\mathrm T_mM</math> выполнено <math>v=\sum_{i=1}^n(v^\xi)^i\frac\partial{\partial x^i}(m)</math> (это формула разложения по базису в <math>\,\mathrm T_mM</math>).</i></p> |
− | <li>Кокасательное пр.-во в точке <math>m</math>: <math>\mathrm T^*_mM=(\mathrm T_mM)^*</math>. Базисные ковекторы, | + | <li>Кокасательное пр.-во в точке <math>m</math>: <math>\mathrm T^*_mM=(\mathrm T_mM)^*</math>. Базисные ковекторы, опред. системой коорд. <math>\xi</math>: <math>\mathrm dx^j(m)=\Bigl(\frac\partial{\partial x^j}(m)\Bigr)^{\!*}</math>. Строка коорд. ковектора: <math>\lambda_\xi</math>. |
<li>Разложение по базису в <math>\mathrm T^*_mM</math>: <math>\lambda=\sum_{j=1}^n(\lambda_\xi)_j\,\mathrm dx^j(m)</math>. Преобр.-я при замене координат: <math>\lambda_\tilde j=\sum_{l=1}^n\frac{\partial x^l}{\partial x^\tilde j}(\tilde\xi(m))\,\lambda_l</math> и <math>\mathrm dx^\tilde j(m)=\sum_{l=1}^n\frac{\partial x^\tilde j}{\partial x^l}(\xi(m))\,\mathrm dx^l(m)</math>. | <li>Разложение по базису в <math>\mathrm T^*_mM</math>: <math>\lambda=\sum_{j=1}^n(\lambda_\xi)_j\,\mathrm dx^j(m)</math>. Преобр.-я при замене координат: <math>\lambda_\tilde j=\sum_{l=1}^n\frac{\partial x^l}{\partial x^\tilde j}(\tilde\xi(m))\,\lambda_l</math> и <math>\mathrm dx^\tilde j(m)=\sum_{l=1}^n\frac{\partial x^\tilde j}{\partial x^l}(\xi(m))\,\mathrm dx^l(m)</math>. | ||
− | <li><u>Теорема о дифференциале функции.</u> <i>Пусть <math>M</math> — многообразие, <math>m\in M</math> и <math>f\in\mathrm | + | <li><u>Теорема о дифференциале функции.</u> <i>Пусть <math>M</math> — многообразие, <math>m\in M</math> и <math>f\in\mathrm C^\infty\!(M)</math>; тогда<br>(1) для любых <math>v\in\mathrm T_mM</math>, выбирая такую кривую <math>\gamma\in\mathrm{Curv}_m(M)</math>, что <math>v=\dot\gamma(0){}</math>, и обозначая через <math>(\mathrm df(m))(v)</math> число <math>(f\circ\gamma)\!\dot{\phantom i}\!(0){}</math>, имеем следующий<br>факт: число <math>(\mathrm df(m))(v)</math> не зависит от выбора кривой <math>\gamma</math>;<br>(2) для любых <math>v\in\mathrm T_mM</math> и таких <math>\xi\in\mathcal A{}</math>, что <math>m\in\mathrm{Dom}\,\xi{}</math>, выполнено <math>(\mathrm df(m))(v)=\mathrm d(f\circ\xi^{-1})(\xi(m))\cdot v^\xi</math>;<br>(3) обозначая через <math>\mathrm df(m)</math> отображение <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathbb R\\v&\mapsto(\mathrm df(m))(v)\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm df(m)\in\mathrm T^*_mM</math>.</i> |
− | <li>Дифференциал в | + | <li>Дифференциал в координ.-х: <math>\mathrm df(m)_\xi=\mathrm d(f\circ\xi^{-1})(\xi(m)){}</math> и <math>(\mathrm df(m)_\xi)_j=\frac{\partial(f\circ\xi^{-1})}{\partial x^j}(\xi(m))=\partial_jf(m)</math>. Утверждение: <math>\mathrm df(m)=\sum_{j=1}^n\partial_jf(m)\,\mathrm dx^j(m)</math>. |
− | <li>Производная Ли функции вдоль вектора (<math>v\in\mathrm T_mM</math>): <math>\mathcal L_v(f)=(\mathrm df(m))(v)</math>. Утверждение: <i><math>\mathcal L_v(fg)=\mathcal L_v(f)\,g(m)+f(m)\,\mathcal L_v(g)</math> и <math>\mathcal L_{\!\frac\partial{\partial x^i}(m)\!}(f)=\partial_if(m)</math></i | + | <li>Производная Ли функции вдоль вектора (<math>v\in\mathrm T_mM</math>): <math>\mathcal L_v(f)=(\mathrm df(m))(v)</math>. Утверждение: <i><math>\mathcal L_v(fg)=\mathcal L_v(f)\,g(m)+f(m)\,\mathcal L_v(g)</math> и <math>\mathcal L_{\!\frac\partial{\partial x^i}(m)\!}(f)=\partial_if(m)</math></i>.</ul> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Версия 21:00, 9 августа 2018
Подробный план первой половины третьего семестра курса алгебры
11 Линейные операторы (часть 2)
11.1 Многочлены и ряды от линейных операторов
- Эвалюация — гомоморфизм. Алгебра, порожденная лин. оператором : .
- Минимальный многочлен лин. оператора : , нормирован, ; .
- Теорема Гамильтона–Кэли. Нильпотентный лин. оператор: . Утверждение: пусть — нильпот. лин. оператор; тогда .
Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .
- Кратности: (алгебраич. кратность), . Теорема о минимальном многочлене.
Теорема о минимальном многочлене. Пусть — поле, — векторное пространство над полем , и ; тогда делит
(и, значит, для любых выполнено ), а также . - Теорема о ядрах многочленов от линейного оператора. Пусть — поле, — векторное пространство над полем и ; тогда
(1) если , то (то есть — -инвариантное подпространство);
(2) если и делит , то ;
(3) если , и многочлены попарно взаимно просты, то
(и, значит, ). - Проектор (идемпотент): (). Отражение: (, если ).
- Ряд от лин. оператора ( — нормир. пр.-во): . Достат. условие сходимости ( — банах. пр.-во, ): .
- Экспонента от непрерывного линейн. оператора в банах. пр.-ве: . Пример: . Теорема о свойствах экспоненты.
Теорема о свойствах экспоненты.
Пусть — банахово пр.-во; тогда для любых выполнено , а также и .
11.2 Собственные, обобщенные собственные и корневые подпространства линейного оператора
- Собственные подпространства: ; геометрическая кратность: . Лемма о собственных подпространствах.
Лемма о собственных подпространствах. Пусть — поле, — векторное пространство над полем , , , и
попарно различны; тогда
(1) ;
(2) если и — независимые множества, то — независимое множество;
(3) если , то для любых выполнено . - Теорема о диагонализации линейных операторов. Пусть — поле, — векторное пространство над полем , и ; тогда
следующие утверждения эквивалентны:
(у1) существует такой упорядоченный базис , что — диагональная матрица;
(у2) (то есть многочлен раскладывается без кратностей в произведение многочленов степени в );
(у3) (то есть пространство раскладывается в прямую сумму собственных подпространств линейного оператора );
(у4) . - Обобщенные собственные подпростр.-ва: ; относительные геометрич. кратности: .
- Жорданова клетка: . Пример: если , то и .
- Теорема об обобщенных собственных подпространствах. Пусть — поле, — вект. пр.-во над , , и ; тогда
(1) для любых выполнено и, если , то ;
(2) для любых выполнено ;
(3) и . - Корневые подпространства: . Нильпотентные части линейного оператора : .
- Теорема о прямой сумме корневых подпространств. Пусть — поле, — вект. пр.-во над , , и многочлен расклад.-ся в
произв.-е многочленов степени в (если , то это условие выполнено для любых в силу алгебр. замкнутости поля ); тогда
(1) (то есть пространство раскладывается в прямую сумму корневых подпространств линейного оператора );
(2) для любых выполнено (и, значит, — нильпотентный линейный оператор) и .
11.3 Жорданова нормальная форма линейного оператора
- — независимое мн.-во относит.-но : . — порождающее мн.-во относит.-но : .
- Базис в относительно — независ. и порожд. подмн.-во в относительно . Две теоремы об относительных базисах (без подробных доказательств).
Теорема 1 об относительных базисах. Пусть — поле, — вект. пр.-во над , и ; тогда следующие утверждения эквивалентны:
(у1) — базис пространства относительно ;
(у2) — независимое множество и (и, значит, если , то );
(у3) для любого вектора существуют единственные такие и , что ;
(у4) — максимальное независимое множество относительно ;
(у5) — минимальное порождающее множество относительно .Теорема 2 об относительных базисах. Пусть — поле, — векторное пространство над полем , и ; тогда
(1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
(2) из любого порождающего подмножества в относительно можно выделить базис в относительно . - Теорема об относительно независимых подмножествах в ядрах степеней линейного оператора. Пусть — поле, — вект. простр.-во над полем и
, а также , , и ; тогда
(1) если — независимое подмножество в относительно , то — инъекция и — независимое подмножество в относительно ;
(2) если , то . - Диаграммы Юнга. Жорданов блок: — прямая сумма жордановых клеток , где — длины строк диаграммы Юнга .
- Диаграмма Юнга : высоты столбцов диаграммы — относительные геометрич. кратности . Корректность опред.-я.
- Теорема о жордановой нормальной форме. Пусть — поле, — вект. пр.-во над , , и многочлен раскладывается в
произведение многочленов степени в (если , то это условие выполнено для любых в силу алгебр. замкнутости поля );
тогда существует такой упорядоченный базис , что — прямая сумма жордановых блоков по всем . - Вычисление рядов от лин. операторов при помощи жордановой нормальной формы. Утверждение: .
- Утверждение: , и , а также . Теорема об экспоненте, группах матриц и матричных алгебрах Ли.
Теорема об экспоненте, группах матриц и матричных алгебрах Ли. Пусть и ; обозначим через кривую ; тогда
(1) если , то , и, если , то ;
(2) если , то , а также, если , то , и, если , то .
12 Линейные операторы и ¯-билинейные формы
12.1 Автоморфизмы пространств с формой, ортогональные и унитарные операторы и матрицы
- Группа автоморфизмов простр.-ва с ¯-билинейной формой: .
- Утверждение: пусть и , или и ; тогда .
- Ортогональная группа ( — вект. пр. над , ): ; унитарная группа ( — вект. пр. над , ): .
- Лемма об автоморфизмах пространств с формой и матрицах.
(1) Пусть — поле с инволюцией, — векторное пространство над полем , , , и ; тогда
и, если форма невырождена, то условие "" можно убрать.
(2) Пусть — псевдоевклидово пространство сигнатуры и ; тогда .
(3) Пусть — псевдоунитарное пространство сигнатуры и ; тогда . - Матричные ортогонал. группы: , , и .
- Матричные унитарные группы: , , и .
- Примеры: , и .
- Группа изометрий предгильбертова пр.-ва: . Теорема об описании изометрий.
Теорема об описании изометрий. Пусть — предгильбертово пространство над полем ; тогда , а также,
обозначая через , и группу и ее подгруппы и соответственно, имеем следующие
факты: , , и (и, значит, ).
12.2 Симметричные, антисимметричные, положительно определенные и нормальные операторы
- Простр.-во симметричных операторов: ; условие в коорд.: .
- Простр.-во антисимм. операторов: ; условие в коорд.: .
- Множество положит. определ. операторов (, или ): .
- Пример: , и ; тогда — полож. определенный оператор.
- Линейный оператор, сопряженный к линейному оператору ( невырождена): ().
- Сопряженный оператор в координатах: . Теорема о свойствах сопряжения. Лемма о сопряжении и ортогональном дополнении.
Теорема о свойствах сопряжения. Пусть — поле с инволюцией, — вект. простр.-во над полем , и форма невырождена; тогда
(1) для любых и выполнено , и (и, значит, отобр.-е —
¯-антиэндоморфизм -алгебры ), а также и ;
(2) , и .Лемма о сопряжении и ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , , форма невырождена,
и ; тогда , а также и . - Форма, связанная с линейным оператором : . Форма в коорд.: . Лемма о форме, связанной с оператором.
Лемма о форме, связанной с оператором. Пусть — поле с инволюцией, — векторное пространство над полем и ; тогда
(1) если форма невырождена, то отображение — изоморфизм векторных пространств;
(2) и ;
(3) если или , то . - Множество нормальных операторов ( невырождена): ; условие в коорд. (): .
12.3 Спектральная теория в унитарных пространствах
- Теорема о собственных векторах нормального оператора. Пусть — евклидово или унитарное пространство и ; тогда
для любых выполнено , а также для любых таких , что , выполнено . - Спектральная теорема для унитарных пространств. Пусть — унитарное пространство и ; тогда
(1) — диагональная матрица;
(2) — диагональная матрица с числами вида , где , на диагонали;
(3) — диагональная матрица с вещественными числами на диагонали;
(4) — диагональная матрица с числами вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Следствие из спектральной теоремы для унитарных пространств. Пусть — унитарное пространство и ; тогда
, , , . - Матричная формулировка спектральной теоремы для унитарных пространств. Пусть и ; тогда
(1) — диагональная матрица;
(2) — диагональная матрица с числами вида , где , на диагонали;
(3) — диагональная матрица с вещественными числами на диагонали;
(4) — диагональная матрица с числами вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Теорема о спектральном разложении нормального оператора. Пусть — унитарное пространство и ; тогда
(1) (это спектральное разложение оператора ) и для любых выполнено ;
(2) для любых таких , что , выполнено и . - Теорема о собственных числах и собственных векторах унитарных, симметричных, антисимметричных и положительно определенных операторов.
Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
оператора выполнено , , , , а также
для любых двух различных собственных чисел и оператора выполнено . - Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).
12.4 Спектральная теория в евклидовых пространствах
- -Диагональная матрица — блочно-диагональная матрица над полем с блоками размера и блоками вида , где и .
- -Спектр линейного оператора в конечномерном пр.-ве над : . Пример: .
- Лемма о линейном операторе с пустым спектром над полем R. Пусть — евклидово пространство, , и ; тогда
(1) существует такое подпространство пространства , что , и, если , то ;
(2) если , то для любых выполнено . - Спектральная теорема для евклидовых пространств. Пусть — евклидово пространство и ; тогда
(1) — -диагональная матрица;
(2) — -диагон. матрица с числами , и блоками вида , где , на диагонали;
(3) — диагональная матрица;
(4) — -диагональная матрица с числом и блоками вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Следствие из спектральной теоремы для евклидовых пространств. Пусть — евклидово пространство и ; тогда
, , , . - Матричная формулировка спектральной теоремы для евклидовых пространств. Пусть и ; тогда
(1) — -диагональная матрица;
(2) — -диагон. матрица с числами , и блоками вида , где , на диагонали;
(3) — диагональная матрица;
(4) — -диагональная матрица с числом и блоками вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Теорема Эйлера о вращениях. Пусть — ориентированное евклидово пространство, и ; тогда существуют такие
и , что (и, значит, — оператор поворота вокруг оси на угол ). - Теорема о симметричных билинейных формах в евклидовом пространстве. Пусть — евклидово пространство, и — оператор,
соответствующий форме относительно изоморфизма (то есть ); тогда
(1) в пространстве существует ортонормированный базис, ортогональный относительно формы (то есть );
(2) множество значений формы на единичной сфере в (то есть ) равно .
12.5 Специальная ортохронная группа Лоренца
- Матричная группа Лоренца: , где . Двумерная сфера: ().
- Теорема о матричной группе Лоренца.
(1) Пусть ; тогда , а также .
(2) Пусть и ; введем следующие обозначения: (), (),
, () и ; тогда , а также
и .
(3) — сюръективный гомоморфизм групп, и — трансверсаль слоев этого гомоморфизма.
(4) Обозначая через ядро гомоморфизма из пункта (3), имеем след. факты: и . - Матричная специальная ортохронная группа Лоренца: . Бусты: . Повороты: .
- Пр.-во Минковского — псевдоевкл. пр.-во сигнатуры ; (это опр.-е не завис. от выбора базиса).
- Спинорная модель пр.-ва Минковского: — пр.-во эрмит.-х матриц разм. . Матрицы Паули: , , .
- Теорема о спинорной модели пространства Минковского.
(1) Пусть ; тогда и .
(2) Пусть , и ; тогда и .
(3) Форма определяет на структуру пространства Минковского, и .
(4) Обозначая через подпространство в , имеем следующие факты: , сужение формы из пункта (3), взятое с
противоположным знаком, определяет на структуру евклидова пространства, и , а также . - Утверждение: . Теорема о бустах и поворотах (эскиз доказ.-ва).
Теорема о бустах и поворотах. Пусть , и ; тогда — буст в с быстротой вдоль оси с направляющим
вектором , и — поворот в на угол вокруг оси с направляющим вектором . - Спинорные представления: и — изоморфизмы групп (без доказ.-ва).
13 Многообразия (часть 1)
13.1 Определения и конструкции, связанные с многообразиями
- -Мерная система координат на топол. пр.-ве — гомеоморфизм между откр. мн.-вами в и ; отн.-е согласованности: — диффеоморфизм.
- -Мерный атлас на — множество попарно согласованных -мерных систем координат на , области определения которых покрывают . Примеры.
- -Мерное многообразие — хаусдорфово со счетной базой топол. пр.-во с максимальным -мерным атласом . Примеры: , откр. мн.-ва в , .
- Отобр. между многообр. и гладкое в , если существ. такие и , что , и отобр. гладкое в .
- Утверждение: гладкость отображения не зависит от выбора систем координат. Мн.-во гладких отображений между многообр.-ми и : .
- — множество кривых, проходящих через . — -алгебра функций.
- Скорость в координатах (, , , ): и .
- Обозн.-я: и ; тогда и . Лемма о замене координат.
Лемма о замене координат. Пусть — многообразие, , , , и ; тогда
(1) (это матричная запись) и (это покомпонентная запись);
(2) для любых выполнено (то есть равенство скоростей не зависит от выбора систем координат).
13.2 Касательные пространства и кокасательные пространства
- Отнош.-е касания в (): ; инвариантная скорость: .
- Касательное пр.-во в точке : . Базисные векторы, определяемые системой коорд. : .
- Теорема о касательном пространстве. Преобразования при замене координат на : и .
Теорема о касательном пространстве. Пусть — многообразие, , , и ; тогда
(1) для любых , выбирая такую кривую , что , и обозначая через столбец , имеем следующий факт:
столбец не зависит от выбора кривой ;
(2) отображение — биекция; определим на структуру вект. простр.-ва над так, чтобы эта биекция стала изоморфизмом
вект. простр.-в (то есть ); тогда эта структура не зависит от выбора системы координат ;
(3) множество — базис пространства ;
(4) для любых выполнено (это формула разложения по базису в ). - Кокасательное пр.-во в точке : . Базисные ковекторы, опред. системой коорд. : . Строка коорд. ковектора: .
- Разложение по базису в : . Преобр.-я при замене координат: и .
- Теорема о дифференциале функции. Пусть — многообразие, и ; тогда
(1) для любых , выбирая такую кривую , что , и обозначая через число , имеем следующий
факт: число не зависит от выбора кривой ;
(2) для любых и таких , что , выполнено ;
(3) обозначая через отображение , имеем следующий факт: . - Дифференциал в координ.-х: и . Утверждение: .
- Производная Ли функции вдоль вектора (): . Утверждение: и .