Алгебра phys 1 апрель–май — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 81: Строка 81:
 
<p><u>Теорема о векторном произведении.</u> <i>Пусть <math>V</math> — евклидово пространство с ориентацией, <math>n=\dim V\ge1</math> и <math>v_1,\ldots,v_{n-1}\in V</math>; тогда<br>(1) след. утв.-я эквивалентны: (у1) векторы <math>v_1,\ldots,v_{n-1}</math> независимы, (у2) <math>v_1\times\ldots\times v_{n-1}\ne0</math> и (у3) <math>(v_1,\ldots,v_{n-1},v_1\times\ldots\times v_{n-1})\in\mathrm{OB}_{>0}(V)</math>;<br>(2) <math>v_1\times\ldots\times v_{n-1}\in\langle v_1,\ldots,v_{n-1}\rangle^\perp</math> и <math>\|v_1\times\ldots\times v_{n-1}\|=|\mathrm{vol}|_{n-1}(v_1,\ldots,v_{n-1})</math>.</i></p></ul>
 
<p><u>Теорема о векторном произведении.</u> <i>Пусть <math>V</math> — евклидово пространство с ориентацией, <math>n=\dim V\ge1</math> и <math>v_1,\ldots,v_{n-1}\in V</math>; тогда<br>(1) след. утв.-я эквивалентны: (у1) векторы <math>v_1,\ldots,v_{n-1}</math> независимы, (у2) <math>v_1\times\ldots\times v_{n-1}\ne0</math> и (у3) <math>(v_1,\ldots,v_{n-1},v_1\times\ldots\times v_{n-1})\in\mathrm{OB}_{>0}(V)</math>;<br>(2) <math>v_1\times\ldots\times v_{n-1}\in\langle v_1,\ldots,v_{n-1}\rangle^\perp</math> и <math>\|v_1\times\ldots\times v_{n-1}\|=|\mathrm{vol}|_{n-1}(v_1,\ldots,v_{n-1})</math>.</i></p></ul>
  
<h3>10&nbsp;&nbsp; Алгебры</h3>
+
<!--<h3>10&nbsp;&nbsp; Алгебры</h3>
 
<h5>10.1&nbsp; Определения и конструкции, связанные с алгебрами</h5>
 
<h5>10.1&nbsp; Определения и конструкции, связанные с алгебрами</h5>
 
<ul><li><math>K</math>-Алгебра — вект. пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из <math>K</math>.
 
<ul><li><math>K</math>-Алгебра — вект. пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из <math>K</math>.
Строка 103: Строка 103:
 
<p><u>Теорема Кэли для алгебр Ли.</u> <i>Пусть <math>K</math> — поле и <math>\mathfrak g</math> — <math>K</math>-алгебра Ли; обозначим через <math>{}_K\mathfrak g</math> векторное пространство над полем <math>K</math>, получающееся<br>из алгебры <math>\mathfrak g</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in\mathfrak g</math>, обозначая через <math>\mathrm{ad}_a</math> отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak g\\b&\mapsto[a,b]\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{ad}_a</math> — линейный оператор (то есть <math>\mathrm{ad}_a\!\in\mathfrak{gl}({}_K\mathfrak g)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak{gl}({}_K\mathfrak g)\\a&\mapsto\mathrm{ad}_a\end{align}\!\biggr)</math> — гомоморфизм алгебр Ли.</i></p>
 
<p><u>Теорема Кэли для алгебр Ли.</u> <i>Пусть <math>K</math> — поле и <math>\mathfrak g</math> — <math>K</math>-алгебра Ли; обозначим через <math>{}_K\mathfrak g</math> векторное пространство над полем <math>K</math>, получающееся<br>из алгебры <math>\mathfrak g</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in\mathfrak g</math>, обозначая через <math>\mathrm{ad}_a</math> отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak g\\b&\mapsto[a,b]\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{ad}_a</math> — линейный оператор (то есть <math>\mathrm{ad}_a\!\in\mathfrak{gl}({}_K\mathfrak g)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak{gl}({}_K\mathfrak g)\\a&\mapsto\mathrm{ad}_a\end{align}\!\biggr)</math> — гомоморфизм алгебр Ли.</i></p>
 
<li>Алгебра дифференцирований <math>K</math>-алгебры <math>A</math>: <math>\mathrm{Der}(A)=\{d\in\mathfrak{gl}({}_K\!A)\mid\forall\,a,b\in A\;\bigl(d(a\,b)=d(a)\,b+a\,d(b)\bigr)\}</math> — подалгебра алгебры Ли <math>\mathfrak{gl}({}_K\!A)</math>.
 
<li>Алгебра дифференцирований <math>K</math>-алгебры <math>A</math>: <math>\mathrm{Der}(A)=\{d\in\mathfrak{gl}({}_K\!A)\mid\forall\,a,b\in A\;\bigl(d(a\,b)=d(a)\,b+a\,d(b)\bigr)\}</math> — подалгебра алгебры Ли <math>\mathfrak{gl}({}_K\!A)</math>.
<li>Пример: пусть <math>M</math> — открытое подмножество в <math>\mathbb R^n</math> и <math>v\in\mathrm C^\infty\!(M,\mathbb R^n)</math>; тогда <math>\Biggl(\begin{align}\mathrm C^\infty\!(M,\mathbb R)&\to\mathrm C^\infty\!(M,\mathbb R)\\f&\mapsto\sum_{i=1}^nv^i\frac{\partial f}{\partial x^i}\end{align}\Biggr)</math> — дифференцирование алгебры <math>\mathrm C^\infty\!(M,\mathbb R)</math>.</ul>
+
<li>Пример: пусть <math>M</math> — открытое подмножество в <math>\mathbb R^n</math> и <math>v\in\mathrm C^\infty\!(M,\mathbb R^n)</math>; тогда <math>\Biggl(\begin{align}\mathrm C^\infty\!(M,\mathbb R)&\to\mathrm C^\infty\!(M,\mathbb R)\\f&\mapsto\sum_{i=1}^nv^i\frac{\partial f}{\partial x^i}\end{align}\Biggr)</math> — дифференцирование алгебры <math>\mathrm C^\infty\!(M,\mathbb R)</math>.</ul>-->

Версия 23:00, 20 марта 2018

Подробный план второй половины второго семестра курса алгебры

8   Векторные пространства с ¯-билинейной формой

8.1  ¯-Билинейные формы
  • Пространство билинейных форм: . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
  • Матрица Грама (): . Форма в координ.-х (): .
  • Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
  • Пр.-ва ¯-симметричных форм и матриц: и .
  • Пр.-ва ¯-антисимм. форм и матриц: и .
  • Гомоморфизмы между простр.-вами с ¯-билинейной формой: .
  • Изоморфизмы между пр.-вами с формой: и .
8.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем следующие факты:
    — симметричная билинейная форма (то есть ), а также ;
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем
    следующие факты: — полуторалинейная форма (то есть ), а также ;
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Гиперповерхность второго порядка в пространстве : множество вида , где , , .
  • Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
8.3  Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
  • Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
  • Случай : невырождена — биекция. Ранг формы : . Утверждение: .
  • Топологич. невырожденность ( или , — нормир. вект. пр.-во, ): — биекция.
  • Пример: или , и ; тогда топологич. невырождена (без док.-ва).
  • Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
  • Нахождение координат вектора при помощи невырожд. формы: . Теорема о базисах и невырожденных формах.

    Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , ,
    и ; тогда , если и только если и форма невырождена.

  • Ортогональные векторы (): . Ортогональное дополн.-е: .
  • Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
    (1) , , и ;
    (2) если и форма невырождена, то , а также и ;
    (3) и, если , то форма невырождена;
    (4) если форма невырождена, то (и, значит, определен ортогональный проектор на : ).
8.4  Диагонализация ¯-симметричных ¯-билинейных форм
  • Ортогональный базис: — диагональная матрица. Форма в ортогонал. коорд. (): .
  • Ортонормированный базис ( или ): — диагональн. матрица с на диагонали.
  • Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
    тогда существует такой вектор , что (то есть существует неизотропный вектор).
  • Теорема Лагранжа. Матричная формулировка теоремы Лагранжа. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.

    Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
    (1) в пространстве существует ортогональный базис (то есть );
    (2) если или , то в пространстве существует ортонормированный базис (то есть ).

    Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
    (1) существует такая матрица , что — диагональная матрица;
    (2) если или , то сущ. такая матрица , что — диаг. матрица с на диагонали.

  • Утверждение: пусть , , форма невырождена и ; тогда .
  • Теорема об определителе матрицы Грама. Пусть — поле с инволюцией, — векторное пространство над полем , , ,
    , , и , а также форма невырождена; обозначим через
    вектор ; тогда .
  • Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
    и ; для любых обозначим через пространство и обозначим через -й угловой минор
    матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
    обозначим через вектор . Тогда для любых выполнено и ,
    а также (это индуктивная формула для нахождения векторов ).
  • Ортогонал. системы функций: и (), (), многочлены Лежандра, Чебышёва, Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).

9   Геометрия в векторных пространствах над или

9.1  Положительно и отрицательно определенные формы и сигнатура формы
  • Мн.-ва положительно и отрицательно определенных форм: и .
  • Мн.-ва полож. и отриц. опред. матриц: и .
  • Следствия из теоремы об ортогональном дополнении и теоремы Лагранжа. Пусть или , — вект. пр.-во над и ; тогда
    (1) если и , то и, если , то форма невырождена и ;
    (2) если , то , если и только если ;
    (3) если и , то , если и только если .
  • Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
    для любых обозначим через -й угловой минор матрицы ; тогда
    (1) , если и только если ;
    (2) , если и только если .
  • Индексы инерции формы : и .
  • Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
    (1) (и, значит, число не зависит от базиса );
    (2) (и, значит, число не зависит от базиса );
    (3) .
  • Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
    и ; тогда , если и только если , и .
  • Сигнатура формы : (или ). Исследование кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
9.2  Предгильбертовы пространства
  • Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
  • Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
  • Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
  • Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
    (1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
    (2) для любых выполнено (это неравенство треугольника);
    (3) если , то для любых и выполнено и (это равенство Парсеваля).
  • Метрика: . Расст. между подмн.-вами: . Теорема о расстояниях и проектировании.

    Теорема о расстояниях и проектировании. Пусть — предгильбертово пространство и ; тогда
    (1) для любых выполнено ;
    (2) если , то для любых выполнено ;
    (3) если , то для любых и выполнено и (это нерав.-во Бесселя).

  • Метод наименьших квадратов: замена системы , где , и , на систему .
  • Угол между векторами и между вектором и подпр.-вом (, , , ): и .
  • Псевдоевклидовопсевдоунитарное пр.-во сигнатуры — кон.-мерн. вект. пр.-во над с невыр. ¯-симметр. ¯-билин. формой сигнатуры .
9.3  Ориентация, объем, векторное произведение
  • Отн.-е одинак. ориентированности ( — кон.-мерн. в. пр. над , ): . Утверждение: .
  • Ориентация кон.-мерн. вект. пр.-ва над — выбор элемента множества . Знак набора векторов: .
  • Теорема о знаке базиса и формах объема. Мн.-во положит. форм объема в вект. пр.-ве с ориентацией: , где .

    Теорема о знаке базиса и формах объема. Пусть — вект. простр.-во с ориентацией и ; тогда .

  • Каноническая форма объема в псевдоевклид. пр.-ве с ориентацией (): ; если , то .
  • Корректность опр.-я объема. Объем в коорд.: . Лемма об объеме и матрице Грама.

    Лемма об объеме и матрице Грама. Пусть — псевдоевклид. пр.-во с ориентацией, , , и ; тогда
    и, если попарно ортогональны, то .

  • Неотрицат. объем в евкл. пр.-ве: в , если независимы; иначе .
  • Теорема о неотрицательном объеме в евклидовом пространстве. Пусть — евклидово пространство, , и ; тогда
    (1) ;
    (2) если , то .
  • Вект. произв.-е в псевдоевкл. пр.-ве с ориент.: ().
  • Векторное произведение в коорд.-х: . Теорема о векторном произведении.

    Теорема о векторном произведении. Пусть — евклидово пространство с ориентацией, и ; тогда
    (1) след. утв.-я эквивалентны: (у1) векторы независимы, (у2) и (у3) ;
    (2) и .