Машинное обучение 2017 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
(Домашние задания.)
 
(не показана одна промежуточная версия этого же участника)
Строка 47: Строка 47:
 
-->
 
-->
  
 +
<!--
 
== Домашние задания. ==
 
== Домашние задания. ==
 
Адрес, на который надо присылать решения -- '''machine.teaching@gmail.com'''. <br/>
 
Адрес, на который надо присылать решения -- '''machine.teaching@gmail.com'''. <br/>
Строка 101: Строка 102:
 
<!--
 
<!--
 
[https://github.com/ktisha/ML2017/tree/master/additional/gold Примеры решений]
 
[https://github.com/ktisha/ML2017/tree/master/additional/gold Примеры решений]
-->
+
 
  
 
== Летучки в начале лекции. ==
 
== Летучки в начале лекции. ==
Строка 121: Строка 122:
 
[https://docs.google.com/spreadsheets/d/1VaKxuDH1Otwuwcjc2JtFTfrwrmJ5man8e7ccCJA4jKU/edit?usp=sharing Результаты]
 
[https://docs.google.com/spreadsheets/d/1VaKxuDH1Otwuwcjc2JtFTfrwrmJ5man8e7ccCJA4jKU/edit?usp=sharing Результаты]
 
<br/>
 
<br/>
 +
 +
-->
  
 
12 опросов по 5 баллов в начале лекции. <br/>
 
12 опросов по 5 баллов в начале лекции. <br/>

Текущая версия на 13:33, 10 февраля 2018

Лекции — Екатерина Тузова (kt@jetbrains.com)

Лекции

1. 15 февраля, "Введение"
2. 22 февраля, "Метрические классификаторы"
3. 1 марта, "Кластеризация"
4. 15 марта, "Деревья принятия решений"
5. 22 марта, "Байесовские методы классификации"
6. 29 марта, "Перцептрон"
7. 5 апреля, "Способность к обобщению"
8. 12 апреля, "Нейронные сети"
9. 19 апреля, "Метод опорных векторов"
10. 26 апреля, "Линейная регрессия"
11. 3 мая, "Анализ смещения и разброса"
12. 10 мая, "Методы восстановления регрессии"
13. 17 мая, "Ансамбли"

Вопросы к экзамену.

Вопросы


12 опросов по 5 баллов в начале лекции.
8 домашних заданий по 20 баллов при сдаче в первую неделю, 10 баллов при сдаче во вторую неделю.
Экзамен 180 баллов

Оценки за курс: 300 баллов -- отлично, 250 баллов -- хорошо, 200 баллов -- удовлетворительно

Дополнительные источники по машинному обучению

Дополнительные источники по Python