Машинное обучение 2017 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
м
 
(не показано 5 промежуточных версий 2 участников)
Строка 15: Строка 15:
 
12. [http://mit.spbau.ru/sewiki/images/b/b9/ML17-Lecture12.pdf 10 мая, "Методы восстановления регрессии"] <br/>
 
12. [http://mit.spbau.ru/sewiki/images/b/b9/ML17-Lecture12.pdf 10 мая, "Методы восстановления регрессии"] <br/>
 
13. [http://mit.spbau.ru/sewiki/images/e/e6/ML17-Lecture13.pdf 17 мая, "Ансамбли"] <br/>
 
13. [http://mit.spbau.ru/sewiki/images/e/e6/ML17-Lecture13.pdf 17 мая, "Ансамбли"] <br/>
 +
 +
== Вопросы к экзамену. ==
 +
 +
[http://mit.spbau.ru/sewiki/images/4/47/ML17-ExamQuestions.pdf Вопросы]
 +
 
<!--  
 
<!--  
 
== Комментарии к лекциям ==
 
== Комментарии к лекциям ==
Строка 21: Строка 26:
 
В лекции использовано [https://en.wikipedia.org/wiki/Singular_value_decomposition#Reduced_SVDs "экономное"(усечённое) сингулярное разложение] <br/>
 
В лекции использовано [https://en.wikipedia.org/wiki/Singular_value_decomposition#Reduced_SVDs "экономное"(усечённое) сингулярное разложение] <br/>
 
Размер матрицы V (l x n). Для неквадратных матриц условие ортогональности раздельное по строкам и столбцам. Таким образом из условия V^T V = I не следует что V V^T = I (см [https://en.wikipedia.org/wiki/Orthogonal_matrix#Rectangular_matrices здесь])
 
Размер матрицы V (l x n). Для неквадратных матриц условие ортогональности раздельное по строкам и столбцам. Таким образом из условия V^T V = I не следует что V V^T = I (см [https://en.wikipedia.org/wiki/Orthogonal_matrix#Rectangular_matrices здесь])
-->
 
  
 
== Конспекты лекций ==
 
== Конспекты лекций ==
Строка 30: Строка 34:
 
4. [https://docs.google.com/document/d/1eoJGEsMZ1Oooo-4nLMh7JtwvHKJW_eZEmZGb7b3ToLY/edit?usp=sharing "Деревья принятия решений"] <br/>
 
4. [https://docs.google.com/document/d/1eoJGEsMZ1Oooo-4nLMh7JtwvHKJW_eZEmZGb7b3ToLY/edit?usp=sharing "Деревья принятия решений"] <br/>
 
5. [https://docs.google.com/document/d/1gwH3qHSr-W5ObXP9it0ggK-794sF21sHBMI7tx_edpU/edit?usp=sharing "Байесовские методы классификации"] <br/>
 
5. [https://docs.google.com/document/d/1gwH3qHSr-W5ObXP9it0ggK-794sF21sHBMI7tx_edpU/edit?usp=sharing "Байесовские методы классификации"] <br/>
6. [https://docs.google.com/document/d/1gwH3qHSr-W5ObXP9it0ggK-794sF21sHBMI7tx_edpU/edit?usp=sharing "Линейные методы классификации"]<br/>
+
6. [https://docs.google.com/document/d/1alG1KUyUId7QzMQVi-r8-Qnb5ziqTt50Nltevr5rcM0/edit?usp=sharing "Линейные методы классификации"]<br/>
 
7. [https://docs.google.com/document/d/1KDGwcARgqjRO73c8xpZIZlisKTxnkdm29EU4voHm25k/edit?usp=sharing "Способность к обобщению"]<br/>
 
7. [https://docs.google.com/document/d/1KDGwcARgqjRO73c8xpZIZlisKTxnkdm29EU4voHm25k/edit?usp=sharing "Способность к обобщению"]<br/>
 
8. [https://docs.google.com/document/d/1ALiZc87qNfQ1IFS2_DbXxQi2SHmDe-tetQh_9ViGrvY/edit?usp=sharing "Нейронные сети"]<br/>
 
8. [https://docs.google.com/document/d/1ALiZc87qNfQ1IFS2_DbXxQi2SHmDe-tetQh_9ViGrvY/edit?usp=sharing "Нейронные сети"]<br/>
Строка 41: Строка 45:
 
Конспект ведут Надежда Бугакова, Анастасия Гайдашенко, Александра Малышева и Ольга Черникова. <br/>
 
Конспект ведут Надежда Бугакова, Анастасия Гайдашенко, Александра Малышева и Ольга Черникова. <br/>
 
Комментарии и правки приветствуются.<br/>
 
Комментарии и правки приветствуются.<br/>
 +
-->
  
== Вопросы к экзамену. ==
+
<!--  
 
+
[http://mit.spbau.ru/sewiki/images/4/47/ML17-ExamQuestions.pdf Вопросы]
+
 
+
 
== Домашние задания. ==
 
== Домашние задания. ==
 
Адрес, на который надо присылать решения -- '''machine.teaching@gmail.com'''. <br/>
 
Адрес, на который надо присылать решения -- '''machine.teaching@gmail.com'''. <br/>
Строка 98: Строка 100:
 
Условие — [http://mit.spbau.ru/sewiki/images/c/c0/ML17-Homework8.pdf Домашнее задание 8]<br/>
 
Условие — [http://mit.spbau.ru/sewiki/images/c/c0/ML17-Homework8.pdf Домашнее задание 8]<br/>
 
<br/>
 
<br/>
 
+
<!--
 
[https://github.com/ktisha/ML2017/tree/master/additional/gold Примеры решений]
 
[https://github.com/ktisha/ML2017/tree/master/additional/gold Примеры решений]
 +
  
 
== Летучки в начале лекции. ==
 
== Летучки в начале лекции. ==
Строка 119: Строка 122:
 
[https://docs.google.com/spreadsheets/d/1VaKxuDH1Otwuwcjc2JtFTfrwrmJ5man8e7ccCJA4jKU/edit?usp=sharing Результаты]
 
[https://docs.google.com/spreadsheets/d/1VaKxuDH1Otwuwcjc2JtFTfrwrmJ5man8e7ccCJA4jKU/edit?usp=sharing Результаты]
 
<br/>
 
<br/>
 +
 +
-->
  
 
12 опросов по 5 баллов в начале лекции. <br/>
 
12 опросов по 5 баллов в начале лекции. <br/>

Текущая версия на 13:33, 10 февраля 2018

Лекции — Екатерина Тузова (kt@jetbrains.com)

Лекции

1. 15 февраля, "Введение"
2. 22 февраля, "Метрические классификаторы"
3. 1 марта, "Кластеризация"
4. 15 марта, "Деревья принятия решений"
5. 22 марта, "Байесовские методы классификации"
6. 29 марта, "Перцептрон"
7. 5 апреля, "Способность к обобщению"
8. 12 апреля, "Нейронные сети"
9. 19 апреля, "Метод опорных векторов"
10. 26 апреля, "Линейная регрессия"
11. 3 мая, "Анализ смещения и разброса"
12. 10 мая, "Методы восстановления регрессии"
13. 17 мая, "Ансамбли"

Вопросы к экзамену.

Вопросы


12 опросов по 5 баллов в начале лекции.
8 домашних заданий по 20 баллов при сдаче в первую неделю, 10 баллов при сдаче во вторую неделю.
Экзамен 180 баллов

Оценки за курс: 300 баллов -- отлично, 250 баллов -- хорошо, 200 баллов -- удовлетворительно

Дополнительные источники по машинному обучению

Дополнительные источники по Python