Алгебра phys 1 ноябрь–декабрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 5: Строка 5:
 
<h5>1.4.1&nbsp; Делимость в коммутативных кольцах</h5>
 
<h5>1.4.1&nbsp; Делимость в коммутативных кольцах</h5>
 
<ul><li>Делимость, строгая делимость, ассоциированность в коммутат. кольце <math>R</math>: <math>s\,|\,r\;\Leftrightarrow\;\exists\,t\in R\;\bigl(r=s\,t\bigr)</math>; <math>s\,|\!\!|\!\!|\,r\;\Leftrightarrow\;s\,|\,r\,\land\,\lnot(r\,|\,s)</math>; <math>r\overset{\scriptscriptstyle\mid}\sim s\;\Leftrightarrow\;r\,|\,s\,\land\,s\,|\,r</math>.
 
<ul><li>Делимость, строгая делимость, ассоциированность в коммутат. кольце <math>R</math>: <math>s\,|\,r\;\Leftrightarrow\;\exists\,t\in R\;\bigl(r=s\,t\bigr)</math>; <math>s\,|\!\!|\!\!|\,r\;\Leftrightarrow\;s\,|\,r\,\land\,\lnot(r\,|\,s)</math>; <math>r\overset{\scriptscriptstyle\mid}\sim s\;\Leftrightarrow\;r\,|\,s\,\land\,s\,|\,r</math>.
<li>Утверждение: <i>пусть <math>R</math> — обл. цел.-сти, <math>r,s,y,z\in R</math> и <math>s\ne0</math>; тогда <math>s\,y=s\,z\,\Leftrightarrow\,y=z\,</math> и <math>\,r\overset{\scriptscriptstyle\mid}\sim s\,\Leftrightarrow\,\exists\,t\in R^\times\bigl(r=s\,t\bigr)</math></i>. Обозн.-е <math>\frac rs</math> в обл. цел.-сти.
+
<li>Утверждение: <i>пусть <math>R</math> — обл. цел.-сти, <math>r,s,y,z\in R</math> и <math>s\ne0</math>; тогда <math>s\,y=s\,z\,\Rightarrow\,y=z\,</math> и <math>\,r\overset{\scriptscriptstyle\mid}\sim s\,\Leftrightarrow\,\exists\,t\in R^\times\bigl(r=s\,t\bigr)</math></i>. Обозн.-е <math>\frac rs</math> в обл. цел.-сти.
 
<li>Наибольший относ.-но <math>|</math> общий делитель <math>r</math> и <math>s</math>: <math>\mathrm{gcd}(r,s)</math>; наименьшее относ.-но <math>|</math> общее кратное <math>r</math> и <math>s</math>: <math>\mathrm{lcm}(r,s)</math>; <math>\mathrm{gcd}</math> и <math>\mathrm{lcm}</math> опред.-ны с точностью до <math>\overset{\scriptscriptstyle\mid}\sim</math>.
 
<li>Наибольший относ.-но <math>|</math> общий делитель <math>r</math> и <math>s</math>: <math>\mathrm{gcd}(r,s)</math>; наименьшее относ.-но <math>|</math> общее кратное <math>r</math> и <math>s</math>: <math>\mathrm{lcm}(r,s)</math>; <math>\mathrm{gcd}</math> и <math>\mathrm{lcm}</math> опред.-ны с точностью до <math>\overset{\scriptscriptstyle\mid}\sim</math>.
 
<li>Нормировка <math>\mathrm{gcd}</math> и <math>\mathrm{lcm}</math> (если они не <math>0</math>) в <math>\mathbb Z</math> и <math>K[x]</math>: <math>\mathrm{gcd}(a,b)\in\mathbb N</math> и <math>\mathrm{lcm}(a,b)\in\mathbb N</math> — в <math>\mathbb Z</math>, многочлены <math>\mathrm{gcd}(f,g)</math> и <math>\mathrm{lcm}(f,g)</math> нормированы — в <math>K[x]</math>.
 
<li>Нормировка <math>\mathrm{gcd}</math> и <math>\mathrm{lcm}</math> (если они не <math>0</math>) в <math>\mathbb Z</math> и <math>K[x]</math>: <math>\mathrm{gcd}(a,b)\in\mathbb N</math> и <math>\mathrm{lcm}(a,b)\in\mathbb N</math> — в <math>\mathbb Z</math>, многочлены <math>\mathrm{gcd}(f,g)</math> и <math>\mathrm{lcm}(f,g)</math> нормированы — в <math>K[x]</math>.
Строка 47: Строка 47:
 
<li>Умножение матриц: <math>(b\cdot a)^i_k=\sum_{j=1}^pb^i_j\,a^j_k</math>. Внешняя ассоциативность умножения. Кольцо <math>\mathrm{Mat}(n,R)=\mathrm{Mat}(n,n,R)</math>, группа <math>\mathrm{GL}(n,R)=\mathrm{Mat}(n,R)^\times</math>.
 
<li>Умножение матриц: <math>(b\cdot a)^i_k=\sum_{j=1}^pb^i_j\,a^j_k</math>. Внешняя ассоциативность умножения. Кольцо <math>\mathrm{Mat}(n,R)=\mathrm{Mat}(n,n,R)</math>, группа <math>\mathrm{GL}(n,R)=\mathrm{Mat}(n,R)^\times</math>.
 
<li>Матрицы специального вида: диагональные, скалярные, верхнетреугольные, нижнетреугольные, треугольные. Блочные и блочно-треугольные матрицы.
 
<li>Матрицы специального вида: диагональные, скалярные, верхнетреугольные, нижнетреугольные, треугольные. Блочные и блочно-треугольные матрицы.
<li>Матрицы, столбцы, строки с одной единицей: <math>(\underline e_i^j)^k_l=\delta_i^k\delta^j_l</math>, <math>(\underline e_i)^k=\delta_i^k</math>, <math>(\underline e^j)_l=\delta^j_l</math>. Утверждение: <i><math>\underline e_i^j\cdot\underline e_k^l=\delta^j_k\underline e_i^l</math>, <math>\underline e_i\cdot\underline e^j=\underline e_i^j</math>, <math>\underline e^j\cdot\underline e_i=\delta_i^j</math></i>.
+
<li>Столбцы, строки, матрицы с нулями и одной единицей: <math>(\mathbf e_i)^k=\delta_i^k</math>, <math>(\mathbf e^j)_l=\delta^j_l</math>, <math>(\mathbf e_i^j)^k_l=\delta_i^k\,\delta^j_l</math>. Утверждение: <i><math>\mathbf e_i\cdot\mathbf e^j=\mathbf e_i^j</math>, <math>\mathbf e^j\cdot\mathbf e_i=\delta_i^j</math>, <math>\mathbf e_i^j\cdot\mathbf e_k^l=\delta^j_k\,\mathbf e_i^l</math></i>.
<li>Строки матрицы <math>a</math>: <math>a^i_\bullet=\underline e^i\cdot a</math>. Столбцы матрицы <math>a</math>: <math>a^\bullet_j=a\cdot\underline e_j</math>. Утверждение: <i><math>(b\cdot a)^i_\bullet=b^i_\bullet\cdot a=\sum_{j=1}^pb^i_j\,a^j_\bullet</math>, а также <math>(b\cdot a)^\bullet_k=b\cdot a^\bullet_k=\sum_{j=1}^pb^\bullet_j\,a^j_k</math></i>.
+
<li>Строки матрицы <math>a</math>: <math>a^i_\bullet=\mathbf e^i\cdot a</math>. Столбцы матрицы <math>a</math>: <math>a^\bullet_j=a\cdot\mathbf e_j</math>. Утверждение: <i><math>(b\cdot a)^i_\bullet=b^i_\bullet\cdot a=\sum_{j=1}^pb^i_j\,a^j_\bullet</math>, а также <math>(b\cdot a)^\bullet_k=b\cdot a^\bullet_k=\sum_{j=1}^pb^\bullet_j\,a^j_k</math></i>.
 
<li>Транспонирование матрицы <math>a</math>: <math>(a^\mathtt T)^i_j=a^j_i</math>. След квадратной матрицы <math>a</math>: <math>\mathrm{tr}\,a=\sum_{i=1}^na^i_i</math>. Теорема о транспонировании, следе и произведении матриц.
 
<li>Транспонирование матрицы <math>a</math>: <math>(a^\mathtt T)^i_j=a^j_i</math>. След квадратной матрицы <math>a</math>: <math>\mathrm{tr}\,a=\sum_{i=1}^na^i_i</math>. Теорема о транспонировании, следе и произведении матриц.
 
<p><u>Теорема о транспонировании, следе и произведении матриц.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>n,p,r\in\mathbb N_0</math>, <math>a\in\mathrm{Mat}(p,n,R)</math> и <math>b\in\mathrm{Mat}(r,p,R)</math>;<br>тогда <math>(b\cdot a)^\mathtt T\!=a^\mathtt T\!\cdot b^\mathtt T</math>, а также, если <math>n=r</math>, то <math>\mathrm{tr}(b\cdot a)=\mathrm{tr}(a\cdot b)</math>.</i></p>
 
<p><u>Теорема о транспонировании, следе и произведении матриц.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>n,p,r\in\mathbb N_0</math>, <math>a\in\mathrm{Mat}(p,n,R)</math> и <math>b\in\mathrm{Mat}(r,p,R)</math>;<br>тогда <math>(b\cdot a)^\mathtt T\!=a^\mathtt T\!\cdot b^\mathtt T</math>, а также, если <math>n=r</math>, то <math>\mathrm{tr}(b\cdot a)=\mathrm{tr}(a\cdot b)</math>.</i></p>
Строка 61: Строка 61:
 
<p><u>Лемма о количестве инверсий.</u> <i>Пусть <math>n\in\mathbb N\!\setminus\!\{1\}</math>, <math>f_1,\ldots,f_n\in\mathbb R</math>, <math>l=|\mathrm{inv}(f_1,\ldots,f_n)|</math> и <math>i\in\{1,\ldots,n-1\}</math>; тогда<br>(1) <math>(f_1,\ldots,f_n)\circ(i\;\,i+1)=(f_1,\ldots,f_{i-1},f_{i+1},f_i,f_{i+2},\ldots,f_n)</math>;<br>(2) если <math>f_i>f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l-1</math>, и, если <math>f_i<f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l+1</math>.</i></p>
 
<p><u>Лемма о количестве инверсий.</u> <i>Пусть <math>n\in\mathbb N\!\setminus\!\{1\}</math>, <math>f_1,\ldots,f_n\in\mathbb R</math>, <math>l=|\mathrm{inv}(f_1,\ldots,f_n)|</math> и <math>i\in\{1,\ldots,n-1\}</math>; тогда<br>(1) <math>(f_1,\ldots,f_n)\circ(i\;\,i+1)=(f_1,\ldots,f_{i-1},f_{i+1},f_i,f_{i+2},\ldots,f_n)</math>;<br>(2) если <math>f_i>f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l-1</math>, и, если <math>f_i<f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l+1</math>.</i></p>
 
<li><u>Теорема о сортировке пузырьком.</u> <i>Пусть <math>n\in\mathbb N_0</math>, <math>f_1,\ldots,f_n\in\mathbb R</math> и <math>l=|\mathrm{inv}(f_1,\ldots,f_n)|</math>; обозначим через <math>\hat{f_1},\ldots,\hat{f_n}</math> числа <math>f_1,\ldots,f_n</math>,<br>упорядоченные по неубыванию (то есть <math>\mathrm{inv}(\hat{f_1},\ldots,\hat{f_n})=\varnothing</math>); тогда<br>(1) существуют такие фундаментальные транспозиции <math>u_1,\ldots,u_l\in\mathrm S_n</math>, что <math>(f_1,\ldots,f_n)\circ u_1\circ\ldots\circ u_l=(\hat{f_1},\ldots,\hat{f_n})</math>;<br>(2) для любых <math>l'\!\in\mathbb N_0</math> из существования таких фундаментальных транспозиций <math>u_1,\ldots,u_{l'}\!\in\mathrm S_n</math>, что <math>(f_1,\ldots,f_n)\circ u_1\circ\ldots\circ u_{l'}=(\hat{f_1},\ldots,\hat{f_n})</math>,<br>следует, что <math>l\le l'</math>, а также в том случае, когда числа <math>f_1,\ldots,f_n</math> попарно различны, что <math>l\equiv l'\;(\mathrm{mod}\;2)</math>.</i>
 
<li><u>Теорема о сортировке пузырьком.</u> <i>Пусть <math>n\in\mathbb N_0</math>, <math>f_1,\ldots,f_n\in\mathbb R</math> и <math>l=|\mathrm{inv}(f_1,\ldots,f_n)|</math>; обозначим через <math>\hat{f_1},\ldots,\hat{f_n}</math> числа <math>f_1,\ldots,f_n</math>,<br>упорядоченные по неубыванию (то есть <math>\mathrm{inv}(\hat{f_1},\ldots,\hat{f_n})=\varnothing</math>); тогда<br>(1) существуют такие фундаментальные транспозиции <math>u_1,\ldots,u_l\in\mathrm S_n</math>, что <math>(f_1,\ldots,f_n)\circ u_1\circ\ldots\circ u_l=(\hat{f_1},\ldots,\hat{f_n})</math>;<br>(2) для любых <math>l'\!\in\mathbb N_0</math> из существования таких фундаментальных транспозиций <math>u_1,\ldots,u_{l'}\!\in\mathrm S_n</math>, что <math>(f_1,\ldots,f_n)\circ u_1\circ\ldots\circ u_{l'}=(\hat{f_1},\ldots,\hat{f_n})</math>,<br>следует, что <math>l\le l'</math>, а также в том случае, когда числа <math>f_1,\ldots,f_n</math> попарно различны, что <math>l\equiv l'\;(\mathrm{mod}\;2)</math>.</i>
<li>Знак последовательности <math>(f_1,\ldots,f_n)</math>: <math>\mathrm{sgn}(f_1,\ldots,f_n)=(-1)^{|\mathrm{inv}(f_1,\ldots,f_n)|}</math>, если числа <math>f_1,\ldots,f_n</math> попарно различны; иначе <math>\mathrm{sgn}(f_1,\ldots,f_n)=0</math>.
+
<li>Знак посл.-сти <math>(f_1,\ldots,f_n)</math>: <math>\varepsilon_{f_1,\ldots,f_n}\!=(-1)^{|\mathrm{inv}(f_1,\ldots,f_n)|}</math>, если <math>f_1,\ldots,f_n</math> попарно различны; иначе <math>\varepsilon_{f_1,\ldots,f_n}\!=0</math>. Пример: <math>(v\times w)^i=\!\!\!\sum_{1\le j,k\le3}\!\!\!\varepsilon_{i,j,k}\,v^jw^k</math>.
<li>Знак перестановки <math>u</math>: <math>\mathrm{sgn}(u)=\mathrm{sgn}(u(1),\ldots,u(n))</math>. Теорема о свойствах знака. Знакопеременная группа: <math>\mathrm A_n=\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}\trianglelefteq\mathrm S_n</math>.
+
<li>Знак перестановки <math>u</math>: <math>\mathrm{sgn}(u)=\varepsilon_{u(1),\ldots,u(n)}</math>. Теорема о свойствах знака. Знакопеременная группа: <math>\mathrm A_n=\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}</math>; <math>|\mathrm A_n|=n!/2</math> (<math>n\ge2</math>).
<p><u>Теорема о свойствах знака.</u> <i>Пусть <math>n\in\mathbb N_0</math>; тогда<br>(1) отображение <math>\biggl(\!\begin{align}\mathrm S_n\!&\to\{1,-1\}\\u&\mapsto\mathrm{sgn}(u)\end{align}\!\biggr)</math> — гомоморфизм групп и, если <math>n\ge2</math>, то это отображение — сюръекция и <math>|\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}|=\frac{n!}2</math>;<br>(2) для любых таких <math>i,j\in\{1,\ldots,n\}</math>, что <math>i<j</math>, выполнено <math>|\mathrm{inv}((i\;\,j))|=2(j-i)-1</math> и <math>\mathrm{sgn}((i\;\,j))=-1</math>;<br>(3) для любых <math>m\in\{1,\ldots,n\}</math> и попарно различных чисел <math>i_1,\ldots,i_m\in\{1,\ldots,n\}</math> выполнено <math>\mathrm{sgn}((i_1\;\ldots\;i_m))=(-1)^{m-1}</math>;<br>(4) для любых <math>u\in\mathrm S_n</math> выполнено <math>\mathrm{sgn}(u)=(-1)^{n-\kappa(u)}</math>.</i></p>
+
<p><u>Теорема о свойствах знака.</u> <i>Пусть <math>n\in\mathbb N_0</math>; тогда<br>(1) отображение <math>\biggl(\!\begin{align}\mathrm S_n\!&\to\{1,-1\}\\u&\mapsto\mathrm{sgn}(u)\end{align}\!\biggr)</math> — гомоморфизм групп и, если <math>n\ge2</math>, то это сюръективный гомоморфизм групп;<br>(2) для любых таких <math>i,j\in\{1,\ldots,n\}</math>, что <math>i<j</math>, выполнено <math>|\mathrm{inv}((i\;\,j))|=2(j-i)-1</math> и <math>\mathrm{sgn}((i\;\,j))=-1</math>;<br>(3) для любых <math>m\in\{1,\ldots,n\}</math> и попарно различных чисел <math>i_1,\ldots,i_m\in\{1,\ldots,n\}</math> выполнено <math>\mathrm{sgn}((i_1\;\ldots\;i_m))=(-1)^{m-1}</math>;<br>(4) для любых <math>u\in\mathrm S_n</math> выполнено <math>\mathrm{sgn}(u)=(-1)^{n-\kappa(u)}</math>.</i></p>
 
<li><u>Теорема о классах сопряженности в симметрических группах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>s,\breve s\in\mathrm S_n</math>; тогда перестановки <math>s</math> и <math>\breve s</math> сопряжены, если и только если<br>(неупорядоченные) наборы длин циклов перестановок <math>s</math> и <math>\breve s</math> (то есть цикловые типы перестановок <math>s</math> и <math>\breve s</math>) равны.</i>
 
<li><u>Теорема о классах сопряженности в симметрических группах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>s,\breve s\in\mathrm S_n</math>; тогда перестановки <math>s</math> и <math>\breve s</math> сопряжены, если и только если<br>(неупорядоченные) наборы длин циклов перестановок <math>s</math> и <math>\breve s</math> (то есть цикловые типы перестановок <math>s</math> и <math>\breve s</math>) равны.</i>
 
<li>Задание группы <math>\mathrm S_n</math> коксетеровскими образующими и соотношениями (без доказат.-ва). Примеры: <math>\mathrm S_3\cong\langle d_1,d_2\!\mid d_1^2,d_2^2,(d_1d_2)^3\rangle</math>, задание группы <math>\mathrm S_4</math>.</ul>
 
<li>Задание группы <math>\mathrm S_n</math> коксетеровскими образующими и соотношениями (без доказат.-ва). Примеры: <math>\mathrm S_3\cong\langle d_1,d_2\!\mid d_1^2,d_2^2,(d_1d_2)^3\rangle</math>, задание группы <math>\mathrm S_4</math>.</ul>
  
 
<h5>1.5.2&nbsp; Группы матриц</h5>
 
<h5>1.5.2&nbsp; Группы матриц</h5>
<ul><li>Определитель квадр. матрицы <math>a</math> над коммут. кольцом: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\cdot\ldots\cdot a^{u(n)}_n\!</math>. Определитель и расстановки ладей на шахматной доске.
+
<ul><li>Определитель квадр. матрицы <math>a</math> над коммут. кольцом: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\cdot\ldots\cdot a^{u(n)}_n=\!\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\!\varepsilon_{j_1,\ldots,j_n}\,a^{j_1}_1\!\cdot\ldots\cdot a^{j_n}_n</math>. Расстановки ладей и <math>\det</math>.
<li>Примеры: <math>\det\!\Bigl(\begin{smallmatrix}\alpha&\beta\\\gamma&\delta\end{smallmatrix}\Bigr)\!=\alpha\delta-\beta\gamma</math>, <math>\det\!\biggl(\begin{smallmatrix}\alpha&\beta&\gamma\\\delta&\varepsilon&\zeta\\\eta&\theta&\iota\end{smallmatrix}\biggr)\!=\alpha\varepsilon\iota+\beta\zeta\eta+\gamma\delta\theta-\gamma\varepsilon\eta-\beta\delta\iota-\alpha\zeta\theta</math>. Определитель и объем. Теорема о свойствах определителя.
+
<li><math>\det\!\Bigl(\begin{smallmatrix}\alpha&\beta\\\gamma&\delta\end{smallmatrix}\Bigr)\!=\alpha\delta-\beta\gamma</math> — ориент. площадь, <math>\det\!\biggl(\begin{smallmatrix}\alpha&\beta&\gamma\\\delta&\varepsilon&\zeta\\\eta&\theta&\iota\end{smallmatrix}\biggr)\!=\alpha\varepsilon\iota+\beta\zeta\eta+\gamma\delta\theta-\gamma\varepsilon\eta-\beta\delta\iota-\alpha\zeta\theta</math> — ориент. объем. Теорема о свойствах определителя.
 
<p><u>Теорема о свойствах определителя.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>n\in\mathbb N_0</math>; тогда<br>(1) для любых <math>i\in\{1,\ldots,n\}</math>, <math>v_1,\ldots,v_{i-1},v,v',v_{i+1},\ldots,v_n\in R^n</math> и <math>c,c'\in R</math> выполнено<br><math>\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,c\,v+c'v'\;\,v_{i+1}\;\ldots\;v_n\bigr)=c\,\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,v\;\,v_{i+1}\;\ldots\;v_n\bigr)+c'\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,v'\;\,v_{i+1}\;\ldots\;v_n\bigr)</math>;<br>(2) для любых таких <math>v_1,\ldots,v_n\in R^n</math>, что <math>v_1,\ldots,v_n</math> не попарно различны, выполнено <math>\det\!\bigl(v_1\;\ldots\;v_n\bigr)=0</math>;<br>(3) для любых <math>a\in\mathrm{Mat}(n,R)</math> выполнено <math>\det a^\mathtt T\!=\det a</math>;<br>(4) для любых <math>n',n''\!\in\mathbb N_0</math>, <math>a'\in\mathrm{Mat}(n',R)</math>, <math>a''\in\mathrm{Mat}(n'',R)</math> и <math>b\in\mathrm{Mat}(n',n'',R)</math> выполнено <math>\det\!\Bigl(\begin{smallmatrix}a'&b\\0&a''\!\end{smallmatrix}\Bigr)\!=\det a'\!\cdot\det a''</math>.</i></p>
 
<p><u>Теорема о свойствах определителя.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>n\in\mathbb N_0</math>; тогда<br>(1) для любых <math>i\in\{1,\ldots,n\}</math>, <math>v_1,\ldots,v_{i-1},v,v',v_{i+1},\ldots,v_n\in R^n</math> и <math>c,c'\in R</math> выполнено<br><math>\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,c\,v+c'v'\;\,v_{i+1}\;\ldots\;v_n\bigr)=c\,\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,v\;\,v_{i+1}\;\ldots\;v_n\bigr)+c'\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,v'\;\,v_{i+1}\;\ldots\;v_n\bigr)</math>;<br>(2) для любых таких <math>v_1,\ldots,v_n\in R^n</math>, что <math>v_1,\ldots,v_n</math> не попарно различны, выполнено <math>\det\!\bigl(v_1\;\ldots\;v_n\bigr)=0</math>;<br>(3) для любых <math>a\in\mathrm{Mat}(n,R)</math> выполнено <math>\det a^\mathtt T\!=\det a</math>;<br>(4) для любых <math>n',n''\!\in\mathbb N_0</math>, <math>a'\in\mathrm{Mat}(n',R)</math>, <math>a''\in\mathrm{Mat}(n'',R)</math> и <math>b\in\mathrm{Mat}(n',n'',R)</math> выполнено <math>\det\!\Bigl(\begin{smallmatrix}a'&b\\0&a''\!\end{smallmatrix}\Bigr)\!=\det a'\!\cdot\det a''</math>.</i></p>
 
<li>Анонс: пусть <math>K</math> — поле; тогда <math>\mathrm{GL}(n,K)=\{a\in\mathrm{Mat}(n,K)\mid\det a\ne0\}</math> и отобр. <math>\biggl(\!\begin{align}\mathrm{Mat}(n,K)&\to K\\a&\mapsto\det a\end{align}\!\biggr)</math> — гомоморфизм моноидов по умножению.
 
<li>Анонс: пусть <math>K</math> — поле; тогда <math>\mathrm{GL}(n,K)=\{a\in\mathrm{Mat}(n,K)\mid\det a\ne0\}</math> и отобр. <math>\biggl(\!\begin{align}\mathrm{Mat}(n,K)&\to K\\a&\mapsto\det a\end{align}\!\biggr)</math> — гомоморфизм моноидов по умножению.

Версия 07:00, 17 ноября 2017

1  Основы алгебры

1.4  Кольца (часть 2)

1.4.1  Делимость в коммутативных кольцах
  • Делимость, строгая делимость, ассоциированность в коммутат. кольце : ; ; .
  • Утверждение: пусть — обл. цел.-сти, и ; тогда и . Обозн.-е в обл. цел.-сти.
  • Наибольший относ.-но общий делитель и : ; наименьшее относ.-но общее кратное и : ; и опред.-ны с точностью до .
  • Нормировка и (если они не ) в и : и — в , многочлены и нормированы — в .
  • Главный идеал — идеал вида . Пример неглавн. идеала: в . Область главных идеалов — обл. цел.-сти, в которой все идеалы главные.
  • Теорема о делимости и главных идеалах. Пусть — коммутативное кольцо и ; тогда
    (1) ; ; ; ;
    (2) если идеал главный, то , и, если идеал главный, то ;
    (3) если в кольце все идеалы главные, то и существуют, а также .
  • Неприводимые и простые эл.-ты: и .
  • Теорема о неприводимых и простых элементах. Пусть — коммутативное кольцо; тогда
    (1) если — область целостности, то ;
    (2) если — область главных идеалов, то ;
    (3) для любых следующие утверждения эквивалентны: (у1) и (у2) — область целостности;
    (4) если — область главных идеалов, то для любых следующие утверждения эквивалентны: (у1) , (у2) ,
    (у3) — область целостности и (у4) — поле.
1.4.2  Евклидовы кольца и факториальные кольца
  • Евклидова норма — такая функция , что относ.-но можно делить с остатком на ненул. эл.-ты и не убывает относ.-но на .
  • Евклидово кольцо — область целостности с евклидовой нормой. Примеры: (); (); , , ().
  • Теорема о евклидовых кольцах. Пусть — евклидово кольцо с евклидовой нормой ; тогда
    (1) для любых и выполнено ;
    (2) в невозможна бесконечная строгая делимость (то есть в не существует такой бесконечной послед.-сти , что );
    (3) если , то для любых выполнено ;
    (4) — область главных идеалов (в частности, кольца и , где — поле, являются областями главных идеалов).
  • Факториальное кольцо — обл. цел.-сти с единств. (с точностью до и перестановок) разложением любого эл.-та () в произв.-е неприводимых эл.-тов.
  • Примеры: — факториальное кольцо (это основная теорема арифметики); если кольцо факториально, то и факториально (без доказательства).
  • Теорема о факториальности евклидовых колец.
    (1) Пусть — область целостности, в невозможна бесконечная строгая делимость и ; тогда — факториальное кольцо.
    (2) Евклидовы кольца являются факториальными кольцами (в частности, кольца и , где — поле, являются факториальными кольцами).
  • Теорема о факториальных кольцах. Пусть — факториальное кольцо и ; разложим и в произведение неприводимых элементов:
    и , где , , попарно неассоциированы и ; тогда
    (1) и ;
    (2) и .
1.4.3  Алгоритм Евклида, китайская теорема об остатках, функция Эйлера
  • Соотношение Безу для эл.-тов и евклидова кольца: , где и — коэффициенты Безу. Нахождение в кольце .
  • Алгоритм Евклида в евклидовом кольце: и ; на -м шаге и ; тогда, если , то .
  • Расширенный алгоритм Евклида в евклидовом кольце: ; на -м шаге ; тогда .
  • Китайская теорема об остатках для целых чисел. Пусть , и попарно взаимно просты (то есть
    ); тогда отображение — изоморфизм колец.
  • Китайская теорема об остатках для многочленов. Пусть — поле, , и попарно взаимно просты (то есть
    ); тогда отображение — изоморфизм колец.
  • Функция Эйлера от : . Пример: если и , то . Утверждение: .
  • Теорема о свойствах функции Эйлера.
    (1) Пусть , и ; тогда (это теорема Эйлера).
    (2) Пусть и ; тогда .
    (3) Пусть ; разложим в произведение простых чисел: , где , , попарно различны и
    ; тогда .
1.4.4  Производная многочлена, интерполяция, рациональные дроби
  • Производная многочлена: . Правило Лейбница. Пусть — кольцо и ; тогда .
  • Корень кратности многочлена : (). Теорема о кратных корнях.

    Теорема о кратных корнях. Пусть — коммутативное кольцо, , и ; тогда
    (1) если — корень кратности не меньше многочлена , то — корень кратности не меньше многочлена ;
    (2) если — область целостности, не делит и — корень кратности многочлена , то — корень кратности многочлена ;
    (3) — кратный корень многочлена (то есть корень кратности не меньше ), если и только если — корень многочленов и .

  • Теорема об интерполяции. Пусть — поле, , и попарно различны; тогда существует единственный
    такой многочлен , что и , и этот многочлен можно найти по следующим формулам:
    (1) , где (это интерполяционная формула Лагранжа);
    (2) , где и (это интерполяционная формула Ньютона).
  • Поле частных: , где и , .
  • Теорема о поле частных. Отождествл.-е и . Примеры: , — поле рацион.-х дробей.

    Теорема о поле частных. Пусть — область целостности; тогда отображение — инъективный гомоморфизм колец, а также
    для любых и выполнено (и, значит, ).

  • Несократимая запись: (, нормир.). Приведение к несократ. записи. Правильная дробь: (). Выделение правил. дроби.
  • Примарная дробь: (, нормир., , ). Простейшая дробь: (, нормир., , ).
  • Метод неопределенных коэффиц.-тов для разложения правильной дроби в сумму простейших дробей (док.-во корректности см. в п. 3 в § 4 главы 5 в [3]).
1.4.5  Матрицы, столбцы, строки
  • Множества матриц, столбцов и строк: , и . Сложение матриц и умножение матриц на скаляры.
  • Умножение матриц: . Внешняя ассоциативность умножения. Кольцо , группа .
  • Матрицы специального вида: диагональные, скалярные, верхнетреугольные, нижнетреугольные, треугольные. Блочные и блочно-треугольные матрицы.
  • Столбцы, строки, матрицы с нулями и одной единицей: , , . Утверждение: , , .
  • Строки матрицы : . Столбцы матрицы : . Утверждение: , а также .
  • Транспонирование матрицы : . След квадратной матрицы : . Теорема о транспонировании, следе и произведении матриц.

    Теорема о транспонировании, следе и произведении матриц. Пусть — коммутативное кольцо, , и ;
    тогда , а также, если , то .

  • Симметрич. и антисимм. матрицы: и .
  • Операторы умн.-я на матрицу между и : — группа по сложению. Теорема об операторах умножения на матрицу.

    Теорема об операторах умножения на матрицу. Пусть — кольцо и ; тогда
    (1) — изоморфизм групп по сложению и, если , то это отобр.-е — изоморфизм колец;
    (2) если — комм. к.-цо, то .

1.5  Группы (часть 2)

1.5.1  Симметрические группы
  • Транспозиции: (, ). Фундаментальные транспозиции: (). Число циклов в перестановке : .
  • Множество инверсий последовательности : . Лемма о количестве инверсий.

    Лемма о количестве инверсий. Пусть , , и ; тогда
    (1) ;
    (2) если , то , и, если , то .

  • Теорема о сортировке пузырьком. Пусть , и ; обозначим через числа ,
    упорядоченные по неубыванию (то есть ); тогда
    (1) существуют такие фундаментальные транспозиции , что ;
    (2) для любых из существования таких фундаментальных транспозиций , что ,
    следует, что , а также в том случае, когда числа попарно различны, что .
  • Знак посл.-сти : , если попарно различны; иначе . Пример: .
  • Знак перестановки : . Теорема о свойствах знака. Знакопеременная группа: ; ().

    Теорема о свойствах знака. Пусть ; тогда
    (1) отображение — гомоморфизм групп и, если , то это сюръективный гомоморфизм групп;
    (2) для любых таких , что , выполнено и ;
    (3) для любых и попарно различных чисел выполнено ;
    (4) для любых выполнено .

  • Теорема о классах сопряженности в симметрических группах. Пусть и ; тогда перестановки и сопряжены, если и только если
    (неупорядоченные) наборы длин циклов перестановок и (то есть цикловые типы перестановок и ) равны.
  • Задание группы коксетеровскими образующими и соотношениями (без доказат.-ва). Примеры: , задание группы .
1.5.2  Группы матриц
  • Определитель квадр. матрицы над коммут. кольцом: . Расстановки ладей и .
  • — ориент. площадь, — ориент. объем. Теорема о свойствах определителя.

    Теорема о свойствах определителя. Пусть — коммутативное кольцо и ; тогда
    (1) для любых , и выполнено
    ;
    (2) для любых таких , что не попарно различны, выполнено ;
    (3) для любых выполнено ;
    (4) для любых , , и выполнено .

  • Анонс: пусть — поле; тогда и отобр. — гомоморфизм моноидов по умножению.
  • Специальная линейн. группа: . Утверждение: .
  • Ортогональная группа: . Специальная ортогон. группа: .
  • Унитарная группа: . Специальная унитарная группа: .
  • Изометрии в : (док.-во только ). Теорема о комплексных числах и вещественных матрицах.

    Теорема о комплексных числах и вещественных матрицах. Отображение — изоморфизм колец, а также
    и отображение — изоморфизм групп.

  • Аффинная линейная группа: . Геометрический смысл: .
1.5.3  Действия групп на множествах
  • Действие группы на мн.-ве — гомоморфизм моноидов . Утверждение: . Обозначение: .
  • Примеры: группа действует на , группы матриц действуют на , группа действует на сдвигами (где ) и на сопряжениями.
  • Динамическая система с дискретнымнепрерывным временем (каскадпоток) — множество с действием группы группы . Теорема Кэли.

    Теорема Кэли. Пусть — группа; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — биекция (то есть );
    (2) отображение — инъективный гомоморфизм групп.

  • -Множество — множество с действием группы . Гомоморфизмы -множеств: .
  • Орбита точки : (, где ). Разбиение -множества на орбиты: .
  • Транзитивное действие (однородное -мн.-во): . Стабилизатор: . Точное действие: .
  • Свободное действие (свободное -мн.-во): . Торсор над — однородн. свободн. -мн.-во ().
  • Теорема о классах смежности по стабилизатору. Неподвижные точки: . Лемма Бернсайда. Пример: .

    Теорема о классах смежности по стабилизатору. Пусть — группа, -множество и ; тогда
    (1) отображение определено корректно, является инъективным гомоморфизмом -множеств и его образ есть ;
    (2) если , то .

    Лемма Бернсайда. Пусть — группа, -множество и ; тогда .

1.5.4  Автоморфизмы, коммутант, полупрямое произведение групп
  • Группа автоморфизмов: . Пример: . Группа внутренних автоморф.-в: .
  • Центр: . Теорема о внутренних автоморфизмах. Группа внешних автоморф.-в: .

    Теорема о внутренних автоморфизмах. Пусть — группа; тогда отображение — гомоморфизм групп, его ядро есть ,
    его образ есть (и, значит, ) и, кроме того, .

  • Коммутатор элементов группы (мультипликативный коммутатор): . Коммутант группы : .
  • Утверждение: . Теорема о коммутанте. Пример: (док.-во только включения ). Абелианизация группы : .

    Теорема о коммутанте. Пусть — группа и ; тогда группа абелева, если и только если (и, значит, абелева).

  • Простая группа: . Примеры: группы (), , ( — поле, ) простые (без доказ.-ва).
  • Полупрямое произвед.-е относ.-но действия (): с бинарной операцией .
  • Утверждение: — гомоморфизм групп. Пример: , где .
  • Теорема о полупрямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
    (1) , и ;
    (2) ;
    (3) если , то в пункте (2) условие "" можно заменить на условие "".