Алгебра phys 2 сентябрь–октябрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 96: | Строка 96: | ||
<li><u>Следствие из спектральной теоремы для унитарных пространств.</u> <i>Пусть <math>V</math> — унитарное пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br><math>a\in\mathrm U(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>.</i> | <li><u>Следствие из спектральной теоремы для унитарных пространств.</u> <i>Пусть <math>V</math> — унитарное пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br><math>a\in\mathrm U(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>.</i> | ||
<li><u>Матричная формулировка спектральной теоремы для унитарных пространств.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb C)</math>; тогда<br>(1) <math>a\cdot\overline a^\mathtt T\!=\overline a^\mathtt T\!\cdot a</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm U(n)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\mathrm e^{\varphi\,\mathrm i}</math>, где <math>\varphi\in[0;2\pi)</math>, на диагонали<math>\bigr)</math>;<br>(3) <math>a\in\overline{\mathrm S}\mathrm{Mat}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с вещественными числами на диагонали<math>\bigr)</math>;<br>(4) <math>a\in\overline{\mathrm A}\mathrm{Mat}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\beta\,\mathrm i</math>, где <math>\beta\in\mathbb R</math>, на диагонали<math>\bigr)</math>;<br>(5) <math>a\in\overline{\mathrm S}\mathrm{Mat}_{>0}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с положительными числами на диагонали<math>\bigr)</math>.</i> | <li><u>Матричная формулировка спектральной теоремы для унитарных пространств.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb C)</math>; тогда<br>(1) <math>a\cdot\overline a^\mathtt T\!=\overline a^\mathtt T\!\cdot a</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm U(n)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\mathrm e^{\varphi\,\mathrm i}</math>, где <math>\varphi\in[0;2\pi)</math>, на диагонали<math>\bigr)</math>;<br>(3) <math>a\in\overline{\mathrm S}\mathrm{Mat}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с вещественными числами на диагонали<math>\bigr)</math>;<br>(4) <math>a\in\overline{\mathrm A}\mathrm{Mat}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\beta\,\mathrm i</math>, где <math>\beta\in\mathbb R</math>, на диагонали<math>\bigr)</math>;<br>(5) <math>a\in\overline{\mathrm S}\mathrm{Mat}_{>0}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с положительными числами на диагонали<math>\bigr)</math>.</i> | ||
− | <li> | + | <li><u>Теорема о спектральном разложении нормального оператора.</u> <i>Пусть <math>V</math> — унитарное пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br>(1) <math>a=\!\!\!\sum_{c\in\mathrm{Spec}(a)}\!\!\!c\cdot\mathrm{proj}_{V_1(a,c)}</math> (это спектральное разложение оператора <math>a</math>) и для любых <math>f\in\mathbb C[x]</math> выполнено <math>f(a)=\!\!\!\sum_{c\in\mathrm{Spec}(a)}\!\!\!f(c)\cdot\mathrm{proj}_{V_1(a,c)}</math>;<br>(2) для любых таких <math>c,c'\in\mathrm{Spec}(a)</math>, что <math>c\ne c'</math>, выполнено <math>\,\mathrm{proj}_{V_1(a,c)}^2\!=\mathrm{proj}_{V_1(a,c)}\!=\mathrm{proj}_{V_1(a,c)}^*</math> и <math>\,\mathrm{proj}_{V_1(a,c)}\!\circ\mathrm{proj}_{V_1(a,c')}\!=0</math>.</i> |
<li><u>Теорема о собственных числах и собственных векторах автоморфизмов, симметричных, антисимметричных и положительно определенных операторов.</u><br><i>(1) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb C</math> и <math>a\in\mathrm U(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm U(V)\,\Rightarrow\,c\in\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Rightarrow\,c\in\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c\in\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также<br>для любых двух различных собственных чисел <math>c</math> и <math>c'</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,c')</math>.<br>(2) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb R</math> и <math>a\in\mathrm O(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm O(V)\,\Rightarrow\,c\in\{1,-1\}</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c=0</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также для любых двух различных<br>собственных чисел <math>c</math> и <math>c'</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,c')</math>.</i> | <li><u>Теорема о собственных числах и собственных векторах автоморфизмов, симметричных, антисимметричных и положительно определенных операторов.</u><br><i>(1) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb C</math> и <math>a\in\mathrm U(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm U(V)\,\Rightarrow\,c\in\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Rightarrow\,c\in\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c\in\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также<br>для любых двух различных собственных чисел <math>c</math> и <math>c'</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,c')</math>.<br>(2) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb R</math> и <math>a\in\mathrm O(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm O(V)\,\Rightarrow\,c\in\{1,-1\}</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c=0</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также для любых двух различных<br>собственных чисел <math>c</math> и <math>c'</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,c')</math>.</i> | ||
<li>Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).</ul> | <li>Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).</ul> | ||
Строка 107: | Строка 107: | ||
<li><u>Следствие из спектральной теоремы для евклидовых пространств.</u> <i>Пусть <math>V</math> — евклидово пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br><math>a\in\mathrm O(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>.</i> | <li><u>Следствие из спектральной теоремы для евклидовых пространств.</u> <i>Пусть <math>V</math> — евклидово пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br><math>a\in\mathrm O(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>.</i> | ||
<li><u>Матричная формулировка спектральной теоремы для евклидовых пространств.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb R)</math>; тогда<br>(1) <math>a\cdot a^\mathtt T\!=a^\mathtt T\!\cdot a</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm O(n)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагон. матрица с числами <math>1</math>, <math>-1</math> и блоками вида <math>\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>, где <math>\varphi\in(0;2\pi)\!\setminus\!\{\pi\}</math>, на диагонали<math>\bigr)</math>;<br>(3) <math>a\in\mathrm{SMat}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица<math>\bigr)</math>;<br>(4) <math>a\in\mathrm{AMat}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагональная матрица с числом <math>0</math> и блоками вида <math>\Bigl(\begin{smallmatrix}0&-\beta\\\beta&0\end{smallmatrix}\Bigr)</math>, где <math>\beta\in\mathbb R\!\setminus\!\{0\}</math>, на диагонали<math>\bigr)</math>;<br>(5) <math>a\in\mathrm{SMat}_{>0}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с положительными числами на диагонали<math>\bigr)</math>.</i> | <li><u>Матричная формулировка спектральной теоремы для евклидовых пространств.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb R)</math>; тогда<br>(1) <math>a\cdot a^\mathtt T\!=a^\mathtt T\!\cdot a</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm O(n)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагон. матрица с числами <math>1</math>, <math>-1</math> и блоками вида <math>\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>, где <math>\varphi\in(0;2\pi)\!\setminus\!\{\pi\}</math>, на диагонали<math>\bigr)</math>;<br>(3) <math>a\in\mathrm{SMat}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица<math>\bigr)</math>;<br>(4) <math>a\in\mathrm{AMat}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагональная матрица с числом <math>0</math> и блоками вида <math>\Bigl(\begin{smallmatrix}0&-\beta\\\beta&0\end{smallmatrix}\Bigr)</math>, где <math>\beta\in\mathbb R\!\setminus\!\{0\}</math>, на диагонали<math>\bigr)</math>;<br>(5) <math>a\in\mathrm{SMat}_{>0}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с положительными числами на диагонали<math>\bigr)</math>.</i> | ||
− | <li><u> | + | <li><u>Теорема Эйлера о вращениях.</u> <i>Пусть <math>V</math> — ориентированное евклидово пространство, <math>\dim V=3</math> и <math>a\in\mathrm{SO}(V)</math>; тогда существуют такие<br><math>e\in\mathrm{OnOB}_{>0}(V)</math> и <math>\varphi\in[0;2\pi)</math>, что <math>a_e^e=\biggl(\begin{smallmatrix}1&0&0\\0&\cos\varphi&-\sin\varphi\\0&\sin\varphi&\cos\varphi\end{smallmatrix}\biggr)</math> (и, значит, <math>a</math> — оператор поворота вокруг оси <math>\langle e_1\rangle</math> на угол <math>\varphi</math>).</i> |
− | <li><u>Теорема | + | <li><u>Теорема о симметричных билинейных формах в евклидовом пространстве.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\tau\in\mathrm{SBi}(V)</math> и <math>a</math> — оператор,<br>соответствующий форме <math>\tau</math> относительно изоморфизма <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\mathrm{Bi}(V)\\a&\mapsto(\,\mid\,)_a\end{align}\!\biggr)</math> (то есть <math>\forall\,v,w\in\,V\;\bigl((a(v)\!\mid\!w)=\tau(v,w)\bigr)</math>); тогда<br>(1) в пространстве <math>V</math> существует ортонормированный базис, ортогональный относительно формы <math>\tau</math> (то есть <math>\mathrm{OnOB}(V)\cap\mathrm{OOB}(V,\tau)\ne\varnothing</math>);<br>(2) <math>\{\tau(v,v)\mid v\in V,\,\|v\|=1\}=\{c\in\mathbb R\mid\min\mathrm{Spec}(a)\le c\le\max\mathrm{Spec}(a)\}</math>.</i></ul> |
Версия 05:00, 20 октября 2017
3 Билинейная и полилинейная алгебра
3.1 Векторные пространства с ¯-билинейной формой
3.1.1 ¯-Билинейные формы
- Пространство билинейных форм: . Примеры: (, ), (, ).
- Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
- Матрица Грама (): . Форма в координ.-х (): .
- Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
- Пр.-ва ¯-симметричных форм и матриц: и .
- Пр.-ва ¯-антисимм. форм и матриц: и .
- Гомоморфизмы между простр.-вами с ¯-билинейной формой: .
- Изоморфизмы между пр.-вами с формой: и .
3.1.2 ¯-Квадратичные формы
- Пространство ¯-квадратичных форм: . Утверждение: .
- ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
- Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
(1) для любых , обозначая через отображение , имеем следующие факты:
— симметричная билинейная форма (то есть ), а также ;
(2) отображения и — взаимно обратные изоморфизмы векторных пространств. - Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
(1) для любых , обозначая через отображение , имеем
следующие факты: — полуторалинейная форма (то есть ), а также ;
(2) отображения и — взаимно обратные изоморфизмы векторных пространств. - Гиперповерхность второго порядка в пространстве : множество вида , где , , .
- Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
3.1.3 Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
- Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
- Случай : невырождена — биекция. Ранг формы : . Утверждение: .
- Топологич. невырожденность ( или , — нормир. вект. пр.-во, ): — биекция.
- Пример: или , и ; тогда топологич. невырождена (без док.-ва).
- Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
- Нахождение координат вектора при помощи невырожд. формы: . Теорема о базисах и невырожденных формах.
Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , ,
и ; тогда , если и только если и форма невырождена. - Ортогональные векторы (): . Ортогональное дополн.-е: .
- Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
(1) , , и ;
(2) если и форма невырождена, то , а также и ;
(3) и, если , то форма невырождена;
(4) если форма невырождена, то (и, значит, определен ортогональный проектор на : ).
3.1.4 Диагонализация ¯-симметричных ¯-билинейных форм
- Ортогональный базис: — диагональная матрица. Форма в ортогонал. коорд. (): .
- Ортонормированный базис ( или ): — диагональн. матрица с на диагонали.
- Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
тогда существует такой вектор , что (то есть существует неизотропный вектор). - Теорема Лагранжа. Матричная формулировка теоремы Лагранжа. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.
Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
(1) в пространстве существует ортогональный базис (то есть );
(2) если или , то в пространстве существует ортонормированный базис (то есть ).Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
(1) существует такая матрица , что — диагональная матрица;
(2) если или , то сущ. такая матрица , что — диаг. матрица с на диагонали. - Утверждение: пусть , , форма невырождена и ; тогда .
- Теорема об определителе матрицы Грама. Пусть — поле с инволюцией, — векторное пространство над полем , , ,
, , и , а также форма невырождена; обозначим через
вектор ; тогда . - Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
и ; для любых обозначим через пространство и обозначим через -й угловой минор
матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
обозначим через вектор . Тогда для любых выполнено и ,
а также (это индуктивная формула для нахождения векторов ). - Ортогонал. системы функций: и (), (), многочлены Лежандра, Чебышёва, Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).
3.2 Геометрия в векторных пространствах над или (часть 1)
3.2.1 Положительно и отрицательно определенные формы и сигнатура формы
- Мн.-ва положительно и отрицательно определенных форм: и .
- Мн.-ва полож. и отриц. опред. матриц: и .
- Следствия из теоремы об ортогональном дополнении и теоремы Лагранжа. Пусть или , — вект. пр.-во над и ; тогда
(1) если и , то и, если , то форма невырождена и ;
(2) если , то , если и только если ;
(3) если и , то , если и только если . - Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
для любых обозначим через -й угловой минор матрицы ; тогда
(1) , если и только если ;
(2) , если и только если . - Индексы инерции формы : и .
- Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
(1) (и, значит, число не зависит от базиса );
(2) (и, значит, число не зависит от базиса );
(3) . - Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
и ; тогда , если и только если , и . - Сигнатура формы : (или ). Исследование кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
3.2.2 Предгильбертовы пространства
- Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
- Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
- Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
- Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
(1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
(2) для любых выполнено (это неравенство треугольника);
(3) если , то для любых и выполнено и (это равенство Парсеваля). - Метрика: . Расст. между подмн.-вами: . Теорема о расстояниях и проектировании.
Теорема о расстояниях и проектировании. Пусть — предгильбертово пространство и ; тогда
(1) для любых выполнено ;
(2) если , то для любых выполнено ;
(3) если , то для любых и выполнено и (это нерав.-во Бесселя). - Метод наименьших квадратов: замена системы , где , и , на систему .
- Угол между векторами и между вектором и подпр.-вом (, , , ): и .
- Псевдоевклидовопсевдоунитарное пр.-во сигнатуры — кон.-мерн. вект. пр.-во над с невыр. ¯-симметр. ¯-билин. формой сигнатуры .
3.3 Линейные операторы и ¯-билинейные формы
3.3.1 Автоморфизмы пространств с формой, ортогональные и унитарные операторы и матрицы
- Группа автоморфизмов пр.-ва с ¯-билинейной формой: .
- Утверждение: пусть и , или и ; тогда .
- Ортогональная группа ( — в. пр. над , ): . Унитарная группа ( — в. пр. над , ): .
- Лемма об автоморфизмах пространств с формой и матрицах.
(1) Пусть — поле с инволюцией, — векторное пространство над полем , , , и ; тогда
и, если форма невырождена, то условие "" можно убрать.
(2) Пусть — псевдоевклидово пространство сигнатуры и ; тогда .
(3) Пусть — псевдоунитарное пространство сигнатуры и ; тогда . - Матричные ортогонал. группы: , , , .
- Матричные унитарные группы: , , , .
- Примеры: , , .
- Группа изометрий предгильбертова пр.-ва: . Теорема об описании изометрий.
Теорема об описании изометрий. Пусть — предгильбертово пространство над полем ; тогда
(1) ;
(2) обозначая через , и группу и ее подгруппы и соответственно, имеем
следующие факты: , и , а также (и, значит, ).
3.3.2 Симметричные, антисимметричные, положительно определенные и нормальные операторы
- Пр.-во симметричных операторов: ; условие в коорд.: .
- Пр.-во антисимм. операторов: ; условие в коорд.: .
- Мн.-во положительно опред. операторов (, или ): .
- Пример: , и ; тогда — положит. определ. оператор.
- Линейный оператор, сопряженный к линейн. оператору ( невырождена): ().
- Сопряженный оператор в координатах: . Теорема о свойствах сопряжения. Лемма о сопряжении и ортогональном дополнении.
Теорема о свойствах сопряжения. Пусть — поле с инволюцией, — вект. простр.-во над полем , и форма невырождена; тогда
(1) для любых и выполнено , и
(и, значит, отображение — ¯-антиэндоморфизм -алгебры );
(2) , а также и ;
(3) если , то для любых выполнено и .Лемма о сопряжении и ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , , форма невырождена,
и ; тогда , а также и . - Форма, связанная с линейн. оператором : . Форма в коорд.: . Лемма о форме, связанной с оператором.
Лемма о форме, связанной с оператором. Пусть — поле с инволюцией, — векторное пространство над полем и ; тогда
(1) если форма невырождена, то отображение — изоморфизм векторных пространств;
(2) если , то и ;
(3) если и или , то . - Мн.-во нормальных операторов ( невырождена): ; условие в коорд. (): .
3.3.3 Спектральная теория в унитарных пространствах
- Теорема о собственных векторах нормального оператора. Пусть — евклидово или унитарное пространство и ; тогда
для любых выполнено , а также для любых таких , что , выполнено . - Спектральная теорема для унитарных пространств. Пусть — унитарное пространство и ; тогда
(1) — диагональная матрица;
(2) — диагональная матрица с числами вида , где , на диагонали;
(3) — диагональная матрица с вещественными числами на диагонали;
(4) — диагональная матрица с числами вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Следствие из спектральной теоремы для унитарных пространств. Пусть — унитарное пространство и ; тогда
, , , . - Матричная формулировка спектральной теоремы для унитарных пространств. Пусть и ; тогда
(1) — диагональная матрица;
(2) — диагональная матрица с числами вида , где , на диагонали;
(3) — диагональная матрица с вещественными числами на диагонали;
(4) — диагональная матрица с числами вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Теорема о спектральном разложении нормального оператора. Пусть — унитарное пространство и ; тогда
(1) (это спектральное разложение оператора ) и для любых выполнено ;
(2) для любых таких , что , выполнено и . - Теорема о собственных числах и собственных векторах автоморфизмов, симметричных, антисимметричных и положительно определенных операторов.
(1) Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
оператора выполнено , , , , а также
для любых двух различных собственных чисел и оператора выполнено .
(2) Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
оператора выполнено , , , а также для любых двух различных
собственных чисел и оператора выполнено . - Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).
3.3.4 Спектральная теория в евклидовых пространствах
- -Диагональная матрица — блочно-диагональная матрица над полем с блоками размера и блоками вида , где и .
- -Спектр линейного оператора в конечномерном пр.-ве над : . Пример: .
- Лемма о линейном операторе с пустым спектром над полем R. Пусть — евклидово пространство, , и ; тогда
(1) существует такое подпространство пространства , что , и, если , то ;
(2) если , то для любых выполнено . - Спектральная теорема для евклидовых пространств. Пусть — евклидово пространство и ; тогда
(1) — -диагональная матрица;
(2) — -диагон. матрица с числами , и блоками вида , где , на диагонали;
(3) — диагональная матрица;
(4) — -диагональная матрица с числом и блоками вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Следствие из спектральной теоремы для евклидовых пространств. Пусть — евклидово пространство и ; тогда
, , , . - Матричная формулировка спектральной теоремы для евклидовых пространств. Пусть и ; тогда
(1) — -диагональная матрица;
(2) — -диагон. матрица с числами , и блоками вида , где , на диагонали;
(3) — диагональная матрица;
(4) — -диагональная матрица с числом и блоками вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Теорема Эйлера о вращениях. Пусть — ориентированное евклидово пространство, и ; тогда существуют такие
и , что (и, значит, — оператор поворота вокруг оси на угол ). - Теорема о симметричных билинейных формах в евклидовом пространстве. Пусть — евклидово пространство, и — оператор,
соответствующий форме относительно изоморфизма (то есть ); тогда
(1) в пространстве существует ортонормированный базис, ортогональный относительно формы (то есть );
(2) .