Алгебра phys 2 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 96: Строка 96:
 
<li><u>Следствие из спектральной теоремы для унитарных пространств.</u> <i>Пусть <math>V</math> — унитарное пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br><math>a\in\mathrm U(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>.</i>
 
<li><u>Следствие из спектральной теоремы для унитарных пространств.</u> <i>Пусть <math>V</math> — унитарное пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br><math>a\in\mathrm U(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Leftrightarrow\,\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>.</i>
 
<li><u>Матричная формулировка спектральной теоремы для унитарных пространств.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb C)</math>; тогда<br>(1) <math>a\cdot\overline a^\mathtt T\!=\overline a^\mathtt T\!\cdot a</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm U(n)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\mathrm e^{\varphi\,\mathrm i}</math>, где <math>\varphi\in[0;2\pi)</math>, на диагонали<math>\bigr)</math>;<br>(3) <math>a\in\overline{\mathrm S}\mathrm{Mat}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с вещественными числами на диагонали<math>\bigr)</math>;<br>(4) <math>a\in\overline{\mathrm A}\mathrm{Mat}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\beta\,\mathrm i</math>, где <math>\beta\in\mathbb R</math>, на диагонали<math>\bigr)</math>;<br>(5) <math>a\in\overline{\mathrm S}\mathrm{Mat}_{>0}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с положительными числами на диагонали<math>\bigr)</math>.</i>
 
<li><u>Матричная формулировка спектральной теоремы для унитарных пространств.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb C)</math>; тогда<br>(1) <math>a\cdot\overline a^\mathtt T\!=\overline a^\mathtt T\!\cdot a</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm U(n)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\mathrm e^{\varphi\,\mathrm i}</math>, где <math>\varphi\in[0;2\pi)</math>, на диагонали<math>\bigr)</math>;<br>(3) <math>a\in\overline{\mathrm S}\mathrm{Mat}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с вещественными числами на диагонали<math>\bigr)</math>;<br>(4) <math>a\in\overline{\mathrm A}\mathrm{Mat}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\beta\,\mathrm i</math>, где <math>\beta\in\mathbb R</math>, на диагонали<math>\bigr)</math>;<br>(5) <math>a\in\overline{\mathrm S}\mathrm{Mat}_{>0}(n,\mathbb C)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с положительными числами на диагонали<math>\bigr)</math>.</i>
<li>Ортогональный проектор: <math>p^2=p\,\land\,p^*\!=p\;\Leftrightarrow\,\exists\,U\le V\;\bigl(p=\mathrm{proj}_U\!\bigr)</math>. Спектральное разложение нормального оператора <math>a</math>: <math>a=\!\!\!\sum_{c\in\mathrm{Spec}(a)}\!\!\!c\cdot\mathrm{proj}_{V_1(a,c)}</math>.
+
<li><u>Теорема о спектральном разложении нормального оператора.</u> <i>Пусть <math>V</math> — унитарное пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br>(1) <math>a=\!\!\!\sum_{c\in\mathrm{Spec}(a)}\!\!\!c\cdot\mathrm{proj}_{V_1(a,c)}</math> (это спектральное разложение оператора <math>a</math>) и для любых <math>f\in\mathbb C[x]</math> выполнено <math>f(a)=\!\!\!\sum_{c\in\mathrm{Spec}(a)}\!\!\!f(c)\cdot\mathrm{proj}_{V_1(a,c)}</math>;<br>(2) для любых таких <math>c,c'\in\mathrm{Spec}(a)</math>, что <math>c\ne c'</math>, выполнено <math>\,\mathrm{proj}_{V_1(a,c)}^2\!=\mathrm{proj}_{V_1(a,c)}\!=\mathrm{proj}_{V_1(a,c)}^*</math> и <math>\,\mathrm{proj}_{V_1(a,c)}\!\circ\mathrm{proj}_{V_1(a,c')}\!=0</math>.</i>
 
<li><u>Теорема о собственных числах и собственных векторах автоморфизмов, симметричных, антисимметричных и положительно определенных операторов.</u><br><i>(1) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb C</math> и <math>a\in\mathrm U(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm U(V)\,\Rightarrow\,c\in\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Rightarrow\,c\in\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c\in\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также<br>для любых двух различных собственных чисел <math>c</math> и <math>c'</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,c')</math>.<br>(2) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb R</math> и <math>a\in\mathrm O(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm O(V)\,\Rightarrow\,c\in\{1,-1\}</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c=0</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также для любых двух различных<br>собственных чисел <math>c</math> и <math>c'</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,c')</math>.</i>
 
<li><u>Теорема о собственных числах и собственных векторах автоморфизмов, симметричных, антисимметричных и положительно определенных операторов.</u><br><i>(1) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb C</math> и <math>a\in\mathrm U(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm U(V)\,\Rightarrow\,c\in\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Rightarrow\,c\in\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c\in\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также<br>для любых двух различных собственных чисел <math>c</math> и <math>c'</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,c')</math>.<br>(2) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb R</math> и <math>a\in\mathrm O(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm O(V)\,\Rightarrow\,c\in\{1,-1\}</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c=0</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также для любых двух различных<br>собственных чисел <math>c</math> и <math>c'</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,c')</math>.</i>
 
<li>Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).</ul>
 
<li>Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).</ul>
Строка 107: Строка 107:
 
<li><u>Следствие из спектральной теоремы для евклидовых пространств.</u> <i>Пусть <math>V</math> — евклидово пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br><math>a\in\mathrm O(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>.</i>
 
<li><u>Следствие из спектральной теоремы для евклидовых пространств.</u> <i>Пусть <math>V</math> — евклидово пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br><math>a\in\mathrm O(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Leftrightarrow\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>.</i>
 
<li><u>Матричная формулировка спектральной теоремы для евклидовых пространств.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb R)</math>; тогда<br>(1) <math>a\cdot a^\mathtt T\!=a^\mathtt T\!\cdot a</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm O(n)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагон. матрица с числами <math>1</math>, <math>-1</math> и блоками вида <math>\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>, где <math>\varphi\in(0;2\pi)\!\setminus\!\{\pi\}</math>, на диагонали<math>\bigr)</math>;<br>(3) <math>a\in\mathrm{SMat}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица<math>\bigr)</math>;<br>(4) <math>a\in\mathrm{AMat}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагональная матрица с числом <math>0</math> и блоками вида <math>\Bigl(\begin{smallmatrix}0&-\beta\\\beta&0\end{smallmatrix}\Bigr)</math>, где <math>\beta\in\mathbb R\!\setminus\!\{0\}</math>, на диагонали<math>\bigr)</math>;<br>(5) <math>a\in\mathrm{SMat}_{>0}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с положительными числами на диагонали<math>\bigr)</math>.</i>
 
<li><u>Матричная формулировка спектральной теоремы для евклидовых пространств.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb R)</math>; тогда<br>(1) <math>a\cdot a^\mathtt T\!=a^\mathtt T\!\cdot a</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm O(n)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагон. матрица с числами <math>1</math>, <math>-1</math> и блоками вида <math>\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>, где <math>\varphi\in(0;2\pi)\!\setminus\!\{\pi\}</math>, на диагонали<math>\bigr)</math>;<br>(3) <math>a\in\mathrm{SMat}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица<math>\bigr)</math>;<br>(4) <math>a\in\mathrm{AMat}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагональная матрица с числом <math>0</math> и блоками вида <math>\Bigl(\begin{smallmatrix}0&-\beta\\\beta&0\end{smallmatrix}\Bigr)</math>, где <math>\beta\in\mathbb R\!\setminus\!\{0\}</math>, на диагонали<math>\bigr)</math>;<br>(5) <math>a\in\mathrm{SMat}_{>0}(n,\mathbb R)</math><math>\;\,\Leftrightarrow\;\,</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с положительными числами на диагонали<math>\bigr)</math>.</i>
<li><u>Усиленная теорема Лагранжа для евклидовых и унитарных пространств.</u> <i>Пусть <math>V</math> — евклидово или унитарное пространство и <math>\tau\in\overline\mathrm{SBi}(V)</math>; тогда<br>существует такой <math>e\in\mathrm{OnOB}(V)</math>, что <math>\tau_{e,e}</math> — диагональная матрица (то есть <math>\mathrm{OnOB}(V)\cap\mathrm{OOB}(V,\tau)\ne\varnothing</math>).</i>
+
<li><u>Теорема Эйлера о вращениях.</u> <i>Пусть <math>V</math> — ориентированное евклидово пространство, <math>\dim V=3</math> и <math>a\in\mathrm{SO}(V)</math>; тогда существуют такие<br><math>e\in\mathrm{OnOB}_{>0}(V)</math> и <math>\varphi\in[0;2\pi)</math>, что <math>a_e^e=\biggl(\begin{smallmatrix}1&0&0\\0&\cos\varphi&-\sin\varphi\\0&\sin\varphi&\cos\varphi\end{smallmatrix}\biggr)</math> (и, значит, <math>a</math> — оператор поворота вокруг оси <math>\langle e_1\rangle</math> на угол <math>\varphi</math>).</i>
<li><u>Теорема Эйлера о вращениях.</u> <i>Пусть <math>V</math> — ориентированное евклидово пространство, <math>\dim V=3</math> и <math>a\in\mathrm{SO}(V)</math>; тогда существуют такие<br><math>e\in\mathrm{OnOB}_{>0}(V)</math> и <math>\varphi\in[0;2\pi)</math>, что <math>a_e^e=\biggl(\begin{smallmatrix}1&0&0\\0&\cos\varphi&-\sin\varphi\\0&\sin\varphi&\cos\varphi\end{smallmatrix}\biggr)</math> (и, значит, <math>a</math> — оператор поворота вокруг оси <math>\langle e_1\rangle</math> на угол <math>\varphi</math>).</i></ul>
+
<li><u>Теорема о симметричных билинейных формах в евклидовом пространстве.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\tau\in\mathrm{SBi}(V)</math> и <math>a</math> — оператор,<br>соответствующий форме <math>\tau</math> относительно изоморфизма <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\mathrm{Bi}(V)\\a&\mapsto(\,\mid\,)_a\end{align}\!\biggr)</math> (то есть <math>\forall\,v,w\in\,V\;\bigl((a(v)\!\mid\!w)=\tau(v,w)\bigr)</math>); тогда<br>(1) в пространстве <math>V</math> существует ортонормированный базис, ортогональный относительно формы <math>\tau</math> (то есть <math>\mathrm{OnOB}(V)\cap\mathrm{OOB}(V,\tau)\ne\varnothing</math>);<br>(2) <math>\{\tau(v,v)\mid v\in V,\,\|v\|=1\}=\{c\in\mathbb R\mid\min\mathrm{Spec}(a)\le c\le\max\mathrm{Spec}(a)\}</math>.</i></ul>

Версия 05:00, 20 октября 2017

3  Билинейная и полилинейная алгебра

3.1  Векторные пространства с ¯-билинейной формой

3.1.1  ¯-Билинейные формы
  • Пространство билинейных форм: . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
  • Матрица Грама (): . Форма в координ.-х (): .
  • Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
  • Пр.-ва ¯-симметричных форм и матриц: и .
  • Пр.-ва ¯-антисимм. форм и матриц: и .
  • Гомоморфизмы между простр.-вами с ¯-билинейной формой: .
  • Изоморфизмы между пр.-вами с формой: и .
3.1.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем следующие факты:
    — симметричная билинейная форма (то есть ), а также ;
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем
    следующие факты: — полуторалинейная форма (то есть ), а также ;
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Гиперповерхность второго порядка в пространстве : множество вида , где , , .
  • Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
3.1.3  Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
  • Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
  • Случай : невырождена — биекция. Ранг формы : . Утверждение: .
  • Топологич. невырожденность ( или , — нормир. вект. пр.-во, ): — биекция.
  • Пример: или , и ; тогда топологич. невырождена (без док.-ва).
  • Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
  • Нахождение координат вектора при помощи невырожд. формы: . Теорема о базисах и невырожденных формах.

    Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , ,
    и ; тогда , если и только если и форма невырождена.

  • Ортогональные векторы (): . Ортогональное дополн.-е: .
  • Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
    (1) , , и ;
    (2) если и форма невырождена, то , а также и ;
    (3) и, если , то форма невырождена;
    (4) если форма невырождена, то (и, значит, определен ортогональный проектор на : ).
3.1.4  Диагонализация ¯-симметричных ¯-билинейных форм
  • Ортогональный базис: — диагональная матрица. Форма в ортогонал. коорд. (): .
  • Ортонормированный базис ( или ): — диагональн. матрица с на диагонали.
  • Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
    тогда существует такой вектор , что (то есть существует неизотропный вектор).
  • Теорема Лагранжа. Матричная формулировка теоремы Лагранжа. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.

    Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
    (1) в пространстве существует ортогональный базис (то есть );
    (2) если или , то в пространстве существует ортонормированный базис (то есть ).

    Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
    (1) существует такая матрица , что — диагональная матрица;
    (2) если или , то сущ. такая матрица , что — диаг. матрица с на диагонали.

  • Утверждение: пусть , , форма невырождена и ; тогда .
  • Теорема об определителе матрицы Грама. Пусть — поле с инволюцией, — векторное пространство над полем , , ,
    , , и , а также форма невырождена; обозначим через
    вектор ; тогда .
  • Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
    и ; для любых обозначим через пространство и обозначим через -й угловой минор
    матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
    обозначим через вектор . Тогда для любых выполнено и ,
    а также (это индуктивная формула для нахождения векторов ).
  • Ортогонал. системы функций: и (), (), многочлены Лежандра, Чебышёва, Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).

3.2  Геометрия в векторных пространствах над или (часть 1)

3.2.1  Положительно и отрицательно определенные формы и сигнатура формы
  • Мн.-ва положительно и отрицательно определенных форм: и .
  • Мн.-ва полож. и отриц. опред. матриц: и .
  • Следствия из теоремы об ортогональном дополнении и теоремы Лагранжа. Пусть или , — вект. пр.-во над и ; тогда
    (1) если и , то и, если , то форма невырождена и ;
    (2) если , то , если и только если ;
    (3) если и , то , если и только если .
  • Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
    для любых обозначим через -й угловой минор матрицы ; тогда
    (1) , если и только если ;
    (2) , если и только если .
  • Индексы инерции формы : и .
  • Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
    (1) (и, значит, число не зависит от базиса );
    (2) (и, значит, число не зависит от базиса );
    (3) .
  • Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
    и ; тогда , если и только если , и .
  • Сигнатура формы : (или ). Исследование кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
3.2.2  Предгильбертовы пространства
  • Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
  • Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
  • Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
  • Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
    (1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
    (2) для любых выполнено (это неравенство треугольника);
    (3) если , то для любых и выполнено и (это равенство Парсеваля).
  • Метрика: . Расст. между подмн.-вами: . Теорема о расстояниях и проектировании.

    Теорема о расстояниях и проектировании. Пусть — предгильбертово пространство и ; тогда
    (1) для любых выполнено ;
    (2) если , то для любых выполнено ;
    (3) если , то для любых и выполнено и (это нерав.-во Бесселя).

  • Метод наименьших квадратов: замена системы , где , и , на систему .
  • Угол между векторами и между вектором и подпр.-вом (, , , ): и .
  • Псевдоевклидовопсевдоунитарное пр.-во сигнатуры — кон.-мерн. вект. пр.-во над с невыр. ¯-симметр. ¯-билин. формой сигнатуры .

3.3  Линейные операторы и ¯-билинейные формы

3.3.1  Автоморфизмы пространств с формой, ортогональные и унитарные операторы и матрицы
  • Группа автоморфизмов пр.-ва с ¯-билинейной формой: .
  • Утверждение: пусть и , или и ; тогда .
  • Ортогональная группа ( — в. пр. над , ): . Унитарная группа ( — в. пр. над , ): .
  • Лемма об автоморфизмах пространств с формой и матрицах.
    (1) Пусть — поле с инволюцией, — векторное пространство над полем , , , и ; тогда
    и, если форма невырождена, то условие "" можно убрать.
    (2) Пусть — псевдоевклидово пространство сигнатуры и ; тогда .
    (3) Пусть — псевдоунитарное пространство сигнатуры и ; тогда .
  • Матричные ортогонал. группы: , , , .
  • Матричные унитарные группы: , , , .
  • Примеры: , , .
  • Группа изометрий предгильбертова пр.-ва: . Теорема об описании изометрий.

    Теорема об описании изометрий. Пусть — предгильбертово пространство над полем ; тогда
    (1) ;
    (2) обозначая через , и группу и ее подгруппы и соответственно, имеем
    следующие факты: , и , а также (и, значит, ).

3.3.2  Симметричные, антисимметричные, положительно определенные и нормальные операторы
  • Пр.-во симметричных операторов: ; условие в коорд.: .
  • Пр.-во антисимм. операторов: ; условие в коорд.: .
  • Мн.-во положительно опред. операторов (, или ): .
  • Пример: , и ; тогда — положит. определ. оператор.
  • Линейный оператор, сопряженный к линейн. оператору ( невырождена): ().
  • Сопряженный оператор в координатах: . Теорема о свойствах сопряжения. Лемма о сопряжении и ортогональном дополнении.

    Теорема о свойствах сопряжения. Пусть — поле с инволюцией, — вект. простр.-во над полем , и форма невырождена; тогда
    (1) для любых и выполнено , и
    (и, значит, отображение — ¯-антиэндоморфизм -алгебры );
    (2) , а также и ;
    (3) если , то для любых выполнено и .

    Лемма о сопряжении и ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , , форма невырождена,
    и ; тогда , а также и .

  • Форма, связанная с линейн. оператором : . Форма в коорд.: . Лемма о форме, связанной с оператором.

    Лемма о форме, связанной с оператором. Пусть — поле с инволюцией, — векторное пространство над полем и ; тогда
    (1) если форма невырождена, то отображение — изоморфизм векторных пространств;
    (2) если , то и ;
    (3) если и или , то .

  • Мн.-во нормальных операторов ( невырождена): ; условие в коорд. (): .
3.3.3  Спектральная теория в унитарных пространствах
  • Теорема о собственных векторах нормального оператора. Пусть — евклидово или унитарное пространство и ; тогда
    для любых выполнено , а также для любых таких , что , выполнено .
  • Спектральная теорема для унитарных пространств. Пусть — унитарное пространство и ; тогда
    (1) — диагональная матрица;
    (2) — диагональная матрица с числами вида , где , на диагонали;
    (3) — диагональная матрица с вещественными числами на диагонали;
    (4) — диагональная матрица с числами вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Следствие из спектральной теоремы для унитарных пространств. Пусть — унитарное пространство и ; тогда
    , , , .
  • Матричная формулировка спектральной теоремы для унитарных пространств. Пусть и ; тогда
    (1) — диагональная матрица;
    (2) — диагональная матрица с числами вида , где , на диагонали;
    (3) — диагональная матрица с вещественными числами на диагонали;
    (4) — диагональная матрица с числами вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Теорема о спектральном разложении нормального оператора. Пусть — унитарное пространство и ; тогда
    (1) (это спектральное разложение оператора ) и для любых выполнено ;
    (2) для любых таких , что , выполнено и .
  • Теорема о собственных числах и собственных векторах автоморфизмов, симметричных, антисимметричных и положительно определенных операторов.
    (1) Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
    оператора выполнено , , , , а также
    для любых двух различных собственных чисел и оператора выполнено .
    (2) Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
    оператора выполнено , , , а также для любых двух различных
    собственных чисел и оператора выполнено .
  • Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).
3.3.4  Спектральная теория в евклидовых пространствах
  • -Диагональная матрица — блочно-диагональная матрица над полем с блоками размера и блоками вида , где и .
  • -Спектр линейного оператора в конечномерном пр.-ве над : . Пример: .
  • Лемма о линейном операторе с пустым спектром над полем R. Пусть — евклидово пространство, , и ; тогда
    (1) существует такое подпространство пространства , что , и, если , то ;
    (2) если , то для любых выполнено .
  • Спектральная теорема для евклидовых пространств. Пусть — евклидово пространство и ; тогда
    (1) -диагональная матрица;
    (2) -диагон. матрица с числами , и блоками вида , где , на диагонали;
    (3) — диагональная матрица;
    (4) -диагональная матрица с числом и блоками вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Следствие из спектральной теоремы для евклидовых пространств. Пусть — евклидово пространство и ; тогда
    , , , .
  • Матричная формулировка спектральной теоремы для евклидовых пространств. Пусть и ; тогда
    (1) -диагональная матрица;
    (2) -диагон. матрица с числами , и блоками вида , где , на диагонали;
    (3) — диагональная матрица;
    (4) -диагональная матрица с числом и блоками вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Теорема Эйлера о вращениях. Пусть — ориентированное евклидово пространство, и ; тогда существуют такие
    и , что (и, значит, — оператор поворота вокруг оси на угол ).
  • Теорема о симметричных билинейных формах в евклидовом пространстве. Пусть — евклидово пространство, и — оператор,
    соответствующий форме относительно изоморфизма (то есть ); тогда
    (1) в пространстве существует ортонормированный базис, ортогональный относительно формы (то есть );
    (2) .