Алгебра phys 1 осень 2017 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 4: Строка 4:
 
<b>Лектор:</b> Евгений Евгеньевич Горячко.
 
<b>Лектор:</b> Евгений Евгеньевич Горячко.
  
<b>Преподаватель практики у подгруппы 101/1:</b> Евгений Евгеньевич Горячко.
+
<b>Преподаватель практики у подгруппы 101/1:</b> Евгений Евгеньевич Горячко.<br>[https://docs.google.com/spreadsheets/d/1bZ3aLPIlH7LfmVRpgDZ57gA1n_913gugn-apmZHfpAg/htmlembed<b>Таблица успеваемости на практике студентов подгруппы 101/1.</b>]
  
<b>Преподаватель практики у подгруппы 101/2:</b> Алексей Викторович Ржонсницкий.<br><br>
+
<b>Преподаватель практики у подгруппы 101/2:</b> Алексей Викторович Ржонсницкий.<br>[https://docs.google.com/spreadsheets/d/1xA_UWlE--mBLBUVg1T1191WDdU__wyYAgeXlw07AdOI/htmlembed<b>Таблица успеваемости на практике студентов подгруппы 101/2.</b>]<br><br>
  
 
<font size="3"><b><u>Дополнительная литература</u></b></font>
 
<font size="3"><b><u>Дополнительная литература</u></b></font>
Строка 30: Строка 30:
 
<h5>1.2&nbsp; Группы (часть 1)</h5>
 
<h5>1.2&nbsp; Группы (часть 1)</h5>
 
<ul><li>1.2.1&nbsp; Множества с операцией<br>
 
<ul><li>1.2.1&nbsp; Множества с операцией<br>
<i>Операции на множестве. Гомоморфизмы. Изоморфизмы. Эндоморфизмы. Автоморфизмы. Теорема о композиции гомоморфизмов. Обозначения по<br>Минковскому. Ассоциативные и коммутативные бинарные операции. Полугруппы. Гомоморфизмы полугрупп. Лемма об обобщенной ассоциативности.</i>
+
<i>Операции на множестве. Гомоморфизмы. Изоморфизмы. Эндоморфизмы. Автоморфизмы. Теорема о композиции гомоморфизмов. Обозначения по<br>Минковскому. Ассоциативные и коммутативные операции. Полугруппы. Гомоморфизмы полугрупп. Лемма об обобщенной ассоциативности.</i>
 
<li>1.2.2&nbsp; Моноиды и группы (основные определения и примеры)<br>
 
<li>1.2.2&nbsp; Моноиды и группы (основные определения и примеры)<br>
 
<i>Моноиды. Гомоморфизмы моноидов. Примеры моноидов. Обратимые элементы моноида. Группы. Гомоморфизмы групп. Таблица Кэли. Примеры групп.<br>Группы изометрий. Симметрические группы. Цикловая запись перестановки. Лемма о циклах. Мультипликативные и аддитивные обозначения.</i>
 
<i>Моноиды. Гомоморфизмы моноидов. Примеры моноидов. Обратимые элементы моноида. Группы. Гомоморфизмы групп. Таблица Кэли. Примеры групп.<br>Группы изометрий. Симметрические группы. Цикловая запись перестановки. Лемма о циклах. Мультипликативные и аддитивные обозначения.</i>

Версия 14:00, 26 сентября 2017

Лектор и преподаватели практики

Лектор: Евгений Евгеньевич Горячко.

Преподаватель практики у подгруппы 101/1: Евгений Евгеньевич Горячко.
Таблица успеваемости на практике студентов подгруппы 101/1.

Преподаватель практики у подгруппы 101/2: Алексей Викторович Ржонсницкий.
Таблица успеваемости на практике студентов подгруппы 101/2.

Дополнительная литература

[1]  Э.Б. Винберг. Курс алгебры.
[2]  А.Л. Городенцев. Алгебра – 1.
[3]  А.И. Кострикин. Введение в алгебру. Часть I. Основы алгебры.

Книги по алгебре (разного качества) можно скачать через сайт http://eek.diary.ru/p57704941.htm.

Полезные учебные материалы по алгебре имеются на странице А.Л. Городенцева и на странице А.В. Степанова.

Содержание первой половины первого семестра курса алгебры

1  Основы алгебры

1.1  Множества, отображения, отношения
  • 1.1.1  Множества
    Логические операции. Кванторы. Равенство множеств. Задание множества перечислением элементов. Выделение подмножества. Операции над
    множествами. Лемма об операциях над множествами. Числовые множества. Множество подмножеств множества. Декартова степень множества.
  • 1.1.2  Отображения
    Отображения. Область и кообласть отображения. Образы и прообразы относительно отображения. Сужения отображения. Инъекции. Сюръекции.
    Биекции. Композиция отображений. Тождественное отображение. Теорема о композиции отображений. Обратное отображение.
  • 1.1.3  Отношения
    Отношения. Область и кообласть отношения. Отношения эквивалентности. Классы эквивалентности. Фактормножества. Разбиения. Трансверсали.
    Теорема об отношениях эквивалентности и разбиениях. Слои отображения. Факторотображения. Принцип Дирихле.
1.2  Группы (часть 1)
  • 1.2.1  Множества с операцией
    Операции на множестве. Гомоморфизмы. Изоморфизмы. Эндоморфизмы. Автоморфизмы. Теорема о композиции гомоморфизмов. Обозначения по
    Минковскому. Ассоциативные и коммутативные операции. Полугруппы. Гомоморфизмы полугрупп. Лемма об обобщенной ассоциативности.
  • 1.2.2  Моноиды и группы (основные определения и примеры)
    Моноиды. Гомоморфизмы моноидов. Примеры моноидов. Обратимые элементы моноида. Группы. Гомоморфизмы групп. Таблица Кэли. Примеры групп.
    Группы изометрий. Симметрические группы. Цикловая запись перестановки. Лемма о циклах. Мультипликативные и аддитивные обозначения.
  • 1.2.3  Подгруппы, классы смежности, циклические группы
    Подгруппы. Подгруппа, порожденная множеством. Правые и левые классы смежности по подгруппе. Теорема Лагранжа. Индекс подгруппы. Порядок
    элемента группы. Лемма о порядке элемента. Теорема об обратимых остатках. Циклические группы. Теорема о циклических группах.
  • 1.2.4  Нормальные подгруппы, факторгруппы, прямое произведение групп
1.3  Кольца (часть 1)
  • 1.3.1  Определения и конструкции, связанные с кольцами
  • 1.3.2  Кольца многочленов
  • 1.3.3  Поле комплексных чисел
  • 1.3.4  Тело кватернионов

Подробный план первой половины первого семестра курса алгебры