Алгебра phys 1 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 9: Строка 9:
 
<ul><li>Логические связки: <math>\lnot</math> — отрицание («не»), <math>\lor</math> — дизъюнкция («или»), <math>\land</math> — конъюнкция («и»), <math>\Rightarrow</math> — импликация («влечет»), <math>\Leftrightarrow</math> — эквивалентность.
 
<ul><li>Логические связки: <math>\lnot</math> — отрицание («не»), <math>\lor</math> — дизъюнкция («или»), <math>\land</math> — конъюнкция («и»), <math>\Rightarrow</math> — импликация («влечет»), <math>\Leftrightarrow</math> — эквивалентность.
 
<li><u>Лемма о логических связках.</u> <i>Пусть <math>a,b,c</math> — высказывания; тогда<br>(1) <math>(a\lor b)\lor c=a\lor(b\lor c)</math>, <math>a\lor b=b\lor a</math>, <math>(a\land b)\land c=a\land(b\land c)</math>, <math>a\land b=b\land a</math>;<br>(2) <math>a\land(b\lor c)=(a\land b)\lor(a\land c)</math>, <math>a\lor(b\land c)=(a\lor b)\land(a\lor c)</math>;<br>(3) <math>\lnot(a\lor b)=\lnot a\land\lnot b</math>, <math>\lnot(a\land b)=\lnot a\lor\lnot b</math>, <math>(a\Rightarrow b)=\lnot a\lor b</math>, <math>(a\Rightarrow b)=(\lnot b\Rightarrow\lnot a)</math>.</i>
 
<li><u>Лемма о логических связках.</u> <i>Пусть <math>a,b,c</math> — высказывания; тогда<br>(1) <math>(a\lor b)\lor c=a\lor(b\lor c)</math>, <math>a\lor b=b\lor a</math>, <math>(a\land b)\land c=a\land(b\land c)</math>, <math>a\land b=b\land a</math>;<br>(2) <math>a\land(b\lor c)=(a\land b)\lor(a\land c)</math>, <math>a\lor(b\land c)=(a\lor b)\land(a\lor c)</math>;<br>(3) <math>\lnot(a\lor b)=\lnot a\land\lnot b</math>, <math>\lnot(a\land b)=\lnot a\lor\lnot b</math>, <math>(a\Rightarrow b)=\lnot a\lor b</math>, <math>(a\Rightarrow b)=(\lnot b\Rightarrow\lnot a)</math>.</i>
<li>Кванторы: <math>\exists</math> — существование, <math>\forall</math> — всеобщность («для любых»). Утверждение: <i><math>\lnot\bigl(\exists\,x\;(p(x))\bigr)\!=\!\bigl(\forall\,x\;(\lnot p(x))\bigr)</math>, <math>\lnot\bigl(\forall\,x\;(p(x))\bigr)\!=\!\bigl(\exists\,x\;(\lnot p(x))\bigr)</math></i>.
+
<li>Кванторы: <math>\exists</math> — существование («существует»), <math>\forall</math> — всеобщность («для любых»), <math>\exists!</math> — существование и единственность («существует единственный»).
 
<li>Задание множества перечислением элементов: <math>\{\ldots\}</math>; <math>\in</math> — принадлежность, <math>\varnothing</math> — пустое множество, <math>\subseteq</math> — включение, <math>\subset</math> — строгое включение.
 
<li>Задание множества перечислением элементов: <math>\{\ldots\}</math>; <math>\in</math> — принадлежность, <math>\varnothing</math> — пустое множество, <math>\subseteq</math> — включение, <math>\subset</math> — строгое включение.
 
<li>Выделение подмножества: <math>\{x\in X\mid p(x)\}</math>. Операции над множествами: <math>\cup</math> — объединение, <math>\cap</math> — пересечение, <math>\setminus</math> — разность, <math>\times</math> — произведение.
 
<li>Выделение подмножества: <math>\{x\in X\mid p(x)\}</math>. Операции над множествами: <math>\cup</math> — объединение, <math>\cap</math> — пересечение, <math>\setminus</math> — разность, <math>\times</math> — произведение.
 
<li><u>Лемма об операциях над множествами.</u> <i>Пусть <math>X,Y,Z</math> — множества; тогда<br>(1) <math>(X\cup Y)\cup Z=X\cup(Y\cup Z)</math>, <math>X\cup Y=Y\cup X</math>, <math>(X\cap Y)\cap Z=X\cap(Y\cap Z)</math>, <math>X\cap Y=Y\cap X</math>;<br>(2) <math>X\cap(Y\cup Z)=(X\cap Y)\cup(X\cap Z)</math>, <math>X\cup(Y\cap Z)=(X\cup Y)\cap(X\cup Z)</math>;<br>(3) если <math>U</math> — множество и <math>X,Y\subseteq U</math>, то <math>U\setminus(X\cup Y)=(U\setminus X)\cap(U\setminus Y)</math> и <math>U\setminus(X\cap Y)=(U\setminus X)\cup(U\setminus Y)</math>.</i>
 
<li><u>Лемма об операциях над множествами.</u> <i>Пусть <math>X,Y,Z</math> — множества; тогда<br>(1) <math>(X\cup Y)\cup Z=X\cup(Y\cup Z)</math>, <math>X\cup Y=Y\cup X</math>, <math>(X\cap Y)\cap Z=X\cap(Y\cap Z)</math>, <math>X\cap Y=Y\cap X</math>;<br>(2) <math>X\cap(Y\cup Z)=(X\cap Y)\cup(X\cap Z)</math>, <math>X\cup(Y\cap Z)=(X\cup Y)\cap(X\cup Z)</math>;<br>(3) если <math>U</math> — множество и <math>X,Y\subseteq U</math>, то <math>U\setminus(X\cup Y)=(U\setminus X)\cap(U\setminus Y)</math> и <math>U\setminus(X\cap Y)=(U\setminus X)\cup(U\setminus Y)</math>.</i>
 
<li>Числовые множества: <math>\mathbb N</math>, <math>\mathbb Z</math>, <math>\mathbb Q</math>, <math>\mathbb R</math> — натуральные, целые, рациональные, вещественные числа; <math>\mathbb N_0=\mathbb N\cup\{0\}</math> и <math>\mathbb Z/n=\{0,\ldots,n-1\}</math> (<math>n\in\mathbb N</math>).
 
<li>Числовые множества: <math>\mathbb N</math>, <math>\mathbb Z</math>, <math>\mathbb Q</math>, <math>\mathbb R</math> — натуральные, целые, рациональные, вещественные числа; <math>\mathbb N_0=\mathbb N\cup\{0\}</math> и <math>\mathbb Z/n=\{0,\ldots,n-1\}</math> (<math>n\in\mathbb N</math>).
<li><math>|X|</math> — порядок (количество элементов) множества <math>X</math>, <math>2^X</math> — множество подмножеств множества <math>X</math>, <math>X^n</math> — <math>n</math>-я степень множества <math>X</math> (<math>n\in\mathbb N_0</math>).</ul>
+
<li><math>|X|</math> — порядок (количество элементов) мн.-ва <math>X</math> (<math>|X|\in\mathbb N_0\cup\{\infty\}</math>), <math>2^X</math> — множество подмножеств мн.-ва <math>X</math>, <math>X^n</math> — <math>n</math>-я степень мн.-ва <math>X</math> (<math>n\in\mathbb N_0</math>).</ul>
  
 
<h5>1.1.2&nbsp; Отображения</h5>
 
<h5>1.1.2&nbsp; Отображения</h5>
<ul><li>Множество отображений, действующих из мн.-ва <math>X</math> в мн.-во <math>Y</math>: <math>\mathrm{Map}(X,Y)</math>. Область, кообласть, график отображения <math>f</math>: <math>\mathrm{Dom}\,f</math>, <math>\mathrm{Codom}\,f</math>, <math>\mathrm{Gr}\,f</math>.
+
<ul><li>Множество отображений, действующих из мн.-ва <math>X</math> в мн.-во <math>Y</math>: <math>\mathrm{Map}(X,Y)</math>. Область отобр.-я <math>f</math>: <math>\mathrm{Dom}\,f</math>, кообласть отобр.-я <math>f</math>: <math>\mathrm{Codom}\,f</math>. Примеры.
 
<li>Образ множества <math>A</math> относительно <math>f</math> (<math>A\subseteq X</math>): <math>f(A)</math>, прообраз множества <math>B</math> относительно <math>f</math> (<math>B\subseteq Y</math>): <math>f^{-1}(B)</math>, образ отображения <math>f</math>: <math>\mathrm{Im}\,f=f(X)</math>.
 
<li>Образ множества <math>A</math> относительно <math>f</math> (<math>A\subseteq X</math>): <math>f(A)</math>, прообраз множества <math>B</math> относительно <math>f</math> (<math>B\subseteq Y</math>): <math>f^{-1}(B)</math>, образ отображения <math>f</math>: <math>\mathrm{Im}\,f=f(X)</math>.
 
<li>Сужения отображения <math>f</math> (<math>A\subseteq X</math> и <math>f(A)\subseteq B\subseteq Y</math>): <math>f|_A</math> и <math>f|_{A\to B}</math>. Сокращенная запись образа: <math>\{f(x)\mid x\in X\}=\{y\in Y\mid\exists\,x\in X\;\bigl(f(x)=y\bigr)\}</math>.
 
<li>Сужения отображения <math>f</math> (<math>A\subseteq X</math> и <math>f(A)\subseteq B\subseteq Y</math>): <math>f|_A</math> и <math>f|_{A\to B}</math>. Сокращенная запись образа: <math>\{f(x)\mid x\in X\}=\{y\in Y\mid\exists\,x\in X\;\bigl(f(x)=y\bigr)\}</math>.
Строка 26: Строка 26:
  
 
<h5>1.1.3&nbsp; Отношения</h5>
 
<h5>1.1.3&nbsp; Отношения</h5>
<ul><li>Множество отношений между множествами <math>X</math> и <math>Y</math>: <math>\mathrm{Rel}(X,Y)</math>. Область, кообласть, график отношения <math>\Delta</math>: <math>\mathrm{Dom}\,\Delta</math>, <math>\mathrm{Codom}\,\Delta</math>, <math>\mathrm{Gr}\,\Delta</math>. Примеры.
+
<ul><li>Множество отношений между множествами <math>X</math> и <math>Y</math>: <math>\mathrm{Rel}(X,Y)</math>. Область отношения <math>\Delta</math>: <math>\mathrm{Dom}\,\Delta</math>, кообласть отношения <math>\Delta</math>: <math>\mathrm{Codom}\,\Delta</math>. Примеры.
 
<li>Отношения эквивалентности: <math>\mathrm{EquivRel}(X)=\{{\sim}\in\mathrm{Rel}(X,X)\mid\forall\,x,y,z\in X\;\bigl(x\sim x\,\land\,(x\sim y\,\Rightarrow\,y\sim x)\,\land\,(x\sim y\,\land\,y\sim z\,\Rightarrow\,x\sim z)\bigr)\}</math>.
 
<li>Отношения эквивалентности: <math>\mathrm{EquivRel}(X)=\{{\sim}\in\mathrm{Rel}(X,X)\mid\forall\,x,y,z\in X\;\bigl(x\sim x\,\land\,(x\sim y\,\Rightarrow\,y\sim x)\,\land\,(x\sim y\,\land\,y\sim z\,\Rightarrow\,x\sim z)\bigr)\}</math>.
 
<li>Класс эквивалентности: <math>\mathrm{cl}_\sim\!(x)=\{\breve x\in X\mid x\sim\breve x\}</math>. Утверждение: <math>x\sim\breve x\,\Leftrightarrow\,\mathrm{cl}_\sim\!(x)=\mathrm{cl}_\sim\!(\breve x)</math>. Фактормножество: <math>X/{\sim}=\{\mathrm{cl}_\sim\!(x)\mid x\in X\}</math>.
 
<li>Класс эквивалентности: <math>\mathrm{cl}_\sim\!(x)=\{\breve x\in X\mid x\sim\breve x\}</math>. Утверждение: <math>x\sim\breve x\,\Leftrightarrow\,\mathrm{cl}_\sim\!(x)=\mathrm{cl}_\sim\!(\breve x)</math>. Фактормножество: <math>X/{\sim}=\{\mathrm{cl}_\sim\!(x)\mid x\in X\}</math>.
Строка 36: Строка 36:
 
<h3>1.2&nbsp; Группы (часть 1)</h3>
 
<h3>1.2&nbsp; Группы (часть 1)</h3>
 
<h5>1.2.1&nbsp; Множества с операцией</h5>
 
<h5>1.2.1&nbsp; Множества с операцией</h5>
<ul><li>Внутренняя <math>n</math>-арная операция на <math>S</math> — отображение, действующее из <math>S^n</math> в <math>S</math> (нульарная операция на <math>S</math> — выделенный элемент множества <math>S</math>).
+
<ul><li>Внутренняя <math>n</math>-арная операция на мн.-ве <math>S</math> — отображение, действующее из <math>S^n</math> в <math>S</math> (нульарная операция на <math>S</math> — выделенный элемент множества <math>S</math>).
 
<li>Гомоморфизмы между мн.-вами с операцией: <math>\mathrm{Hom}(S,V)=\{f\in\mathrm{Map}(S,V)\mid\forall\,s_1,\ldots,s_n\in S\;\bigl(f(o_S(s_1,\ldots,s_n))=o_V(f(s_1),\ldots,f(s_n))\bigr)\}</math>.
 
<li>Гомоморфизмы между мн.-вами с операцией: <math>\mathrm{Hom}(S,V)=\{f\in\mathrm{Map}(S,V)\mid\forall\,s_1,\ldots,s_n\in S\;\bigl(f(o_S(s_1,\ldots,s_n))=o_V(f(s_1),\ldots,f(s_n))\bigr)\}</math>.
 
<li>Изоморфизмы: <math>\mathrm{Iso}(S,V)=\mathrm{Hom}(S,V)\cap\mathrm{Bij}(S,V)</math>. Эндоморфизмы мн.-ва с опер.: <math>\mathrm{End}(S)=\mathrm{Hom}(S,S)</math>. Автоморфизмы: <math>\mathrm{Aut}(S)=\mathrm{Iso}(S,S)</math>.
 
<li>Изоморфизмы: <math>\mathrm{Iso}(S,V)=\mathrm{Hom}(S,V)\cap\mathrm{Bij}(S,V)</math>. Эндоморфизмы мн.-ва с опер.: <math>\mathrm{End}(S)=\mathrm{Hom}(S,S)</math>. Автоморфизмы: <math>\mathrm{Aut}(S)=\mathrm{Iso}(S,S)</math>.
 
<li><u>Теорема о композиции гомоморфизмов.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>S,V,Y</math> — множества с <math>n</math>-арной операцией; тогда<br>(1) для любых <math>f\in\mathrm{Hom}(S,V)</math> и <math>g\in\mathrm{Hom}(V,Y)</math> выполнено <math>g\circ f\in\mathrm{Hom}(S,Y)</math>;<br>(2) для любых <math>f\in\mathrm{Iso}(S,V)</math> выполнено <math>f^{-1}\!\in\mathrm{Iso}(V,S)</math>.</i>
 
<li><u>Теорема о композиции гомоморфизмов.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>S,V,Y</math> — множества с <math>n</math>-арной операцией; тогда<br>(1) для любых <math>f\in\mathrm{Hom}(S,V)</math> и <math>g\in\mathrm{Hom}(V,Y)</math> выполнено <math>g\circ f\in\mathrm{Hom}(S,Y)</math>;<br>(2) для любых <math>f\in\mathrm{Iso}(S,V)</math> выполнено <math>f^{-1}\!\in\mathrm{Iso}(V,S)</math>.</i>
 
<li>Обозначение по Минковскому: <math>o_S(S_1,\ldots,S_n)=\{o_S(s_1,\ldots,s_n)\mid s_1\in S_1,\ldots,s_n\in S_n\}</math>. Примеры: <math>\mathbb N+\mathbb N=\mathbb N\!\setminus\!\{1\}</math>, <math>\mathbb N\cdot\mathbb N=\mathbb N</math>, <math>\mathbb Z+\mathbb Z=\mathbb Z</math>.
 
<li>Обозначение по Минковскому: <math>o_S(S_1,\ldots,S_n)=\{o_S(s_1,\ldots,s_n)\mid s_1\in S_1,\ldots,s_n\in S_n\}</math>. Примеры: <math>\mathbb N+\mathbb N=\mathbb N\!\setminus\!\{1\}</math>, <math>\mathbb N\cdot\mathbb N=\mathbb N</math>, <math>\mathbb Z+\mathbb Z=\mathbb Z</math>.
<li>Инфиксная запись бинарных операций. Ассоциативность: <math>\forall\,s,t,u\in S\;\bigl((s\cdot t)\cdot u=s\cdot(t\cdot u)\bigr)</math>. Коммутативность: <math>\forall\,s,t\in S\;\bigl(s\cdot t=t\cdot s\bigr)</math>.
+
<li>Инфиксная запись бинарн. опер.-й. Ассоциативность: <math>\forall\,s,t,u\in S\;\bigl((s\cdot t)\cdot u=s\cdot(t\cdot u)\bigr)</math>. Коммутативность (абелевость): <math>\forall\,s,t\in S\;\bigl(s\cdot t=t\cdot s\bigr)</math>.
 
<li>Полугруппа — множество с ассоциативной операцией. Гомоморфизмы полугрупп. Примеры полугрупп. Лемма об обобщенной ассоциативности.
 
<li>Полугруппа — множество с ассоциативной операцией. Гомоморфизмы полугрупп. Примеры полугрупп. Лемма об обобщенной ассоциативности.
 
<p><u>Лемма об обобщенной ассоциативности.</u> <i>Пусть <math>S</math> — полугруппа, <math>n\in\mathbb N</math> и <math>s_1,\ldots,s_n\in S</math>; тогда значение выражения <math>s_1\cdot\ldots\cdot s_n</math> не зависит от<br>расстановки скобок (то есть от порядка выполнения операций при вычислении этого выражения).</i></p></ul>
 
<p><u>Лемма об обобщенной ассоциативности.</u> <i>Пусть <math>S</math> — полугруппа, <math>n\in\mathbb N</math> и <math>s_1,\ldots,s_n\in S</math>; тогда значение выражения <math>s_1\cdot\ldots\cdot s_n</math> не зависит от<br>расстановки скобок (то есть от порядка выполнения операций при вычислении этого выражения).</i></p></ul>

Версия 02:00, 20 июня 2017

1  Основы алгебры

Читателю может потребоваться усилие воли, чтобы увидеть в математике воспитателя образного мышления. Чаще с ней связы-
вается представление о жесткой логике и вычислительном формализме. Но это — лишь дисциплина, линейка, которой нас учат
не умирать. Вычислительный формализм математики — мысль, экстериоризованная до такой степени, что она на время отчуж-
дается и превращается в технологический процесс. Математический образ формируется в затяжном приживлении к человеку
этой временно отторгнутой мысли. Думать — значит вычислять, волнуясь.
Ю.И. Манин. Математика и физика
Развитие современной физики потребовало такого математического аппарата, который непрерывно расширяет свои основания и
становится все более и более абстрактным. Неевклидова геометрия и некоммутативная алгебра, которые одно время считались
чистой игрой разума и упражнениями для логических размышлений, теперь оказались необходимыми для описания весьма общих
закономерностей физического мира. Похоже, что этот процесс возрастания степени абстракции будет продолжаться и в будущем
и что развитие физики следует связывать с непрерывной модификацией и обобщением аксиом, лежащих в основе математики, а
не с логическим развитием какой бы то ни было математической схемы, построенной на фиксированном основании.
П.А.М. Дирак. Квантованные сингулярности в электромагнитном поле

1.1  Множества, отображения, отношения

1.1.1  Множества
  • Логические связки: — отрицание («не»), — дизъюнкция («или»), — конъюнкция («и»), — импликация («влечет»), — эквивалентность.
  • Лемма о логических связках. Пусть — высказывания; тогда
    (1) , , , ;
    (2) , ;
    (3) , , , .
  • Кванторы: — существование («существует»), — всеобщность («для любых»), — существование и единственность («существует единственный»).
  • Задание множества перечислением элементов: ; — принадлежность, — пустое множество, — включение, — строгое включение.
  • Выделение подмножества: . Операции над множествами: — объединение, — пересечение, — разность, — произведение.
  • Лемма об операциях над множествами. Пусть — множества; тогда
    (1) , , , ;
    (2) , ;
    (3) если — множество и , то и .
  • Числовые множества: , , , — натуральные, целые, рациональные, вещественные числа; и ().
  • — порядок (количество элементов) мн.-ва (), — множество подмножеств мн.-ва , -я степень мн.-ва ().
1.1.2  Отображения
  • Множество отображений, действующих из мн.-ва в мн.-во : . Область отобр.-я : , кообласть отобр.-я : . Примеры.
  • Образ множества относительно (): , прообраз множества относительно (): , образ отображения : .
  • Сужения отображения ( и ): и . Сокращенная запись образа: .
  • Инъекции: . Сюръекции: .
  • Биекции: . Композиция отображений: . Тождественное отображение: .
  • Теорема о композиции отображений. Пусть — множества и ; тогда
    (1) , и, если — множества, и , то ;
    (2) если , то — инъекция, если и только если ;
    (3) — сюръекция, если и только если ;
    (4) — биекция, если и только если .
  • Отображение , обратное к отображению : и . Пример: взаимно обратные биекции и .
1.1.3  Отношения
  • Множество отношений между множествами и : . Область отношения : , кообласть отношения : . Примеры.
  • Отношения эквивалентности: .
  • Класс эквивалентности: . Утверждение: . Фактормножество: .
  • Разбиения: . Утверждение: . Трансверсали.
  • Теорема об отношениях эквивалентности и разбиениях. Пусть — множество; тогда отображение — биекция.
  • Отношение : . Слои отображения : (). Факторотображение — биекция.
  • Утверждение: . Принцип Дирихле. Пусть — множества, ; тогда .

1.2  Группы (часть 1)

1.2.1  Множества с операцией
  • Внутренняя -арная операция на мн.-ве — отображение, действующее из в (нульарная операция на — выделенный элемент множества ).
  • Гомоморфизмы между мн.-вами с операцией: .
  • Изоморфизмы: . Эндоморфизмы мн.-ва с опер.: . Автоморфизмы: .
  • Теорема о композиции гомоморфизмов. Пусть и — множества с -арной операцией; тогда
    (1) для любых и выполнено ;
    (2) для любых выполнено .
  • Обозначение по Минковскому: . Примеры: , , .
  • Инфиксная запись бинарн. опер.-й. Ассоциативность: . Коммутативность (абелевость): .
  • Полугруппа — множество с ассоциативной операцией. Гомоморфизмы полугрупп. Примеры полугрупп. Лемма об обобщенной ассоциативности.

    Лемма об обобщенной ассоциативности. Пусть — полугруппа, и ; тогда значение выражения не зависит от
    расстановки скобок (то есть от порядка выполнения операций при вычислении этого выражения).

1.2.2  Моноиды и группы (основные определения и примеры)
  • Моноид — полугруппа с нейтральным элементом (единицей). Единственность единицы, единица как нульарная операция. Гомоморфизмы моноидов.
  • Примеры: числовые моноиды, моноиды функций , моноиды слов и , моноиды отображений .
  • Обратимые элементы: . Единственность обратного элемента. Утверждение: .
  • Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа ( — моноид). Таблица Кэли. Изоморфные группы: .
  • Примеры: числовые группы, группы остатков, группы функций , свободные группы , группы биекций ().
  • Мультипликативные обозначения в группе : , , и (). Аддитивные обозначения в абелевой группе : , , и ().
  • Симметрические группы: . Запись перестановки в виде послед.-сти значений, цикловая запись перестановки. Лемма о циклах.

    Лемма о циклах. Пусть , , числа попарно различны и ; тогда
    , а также .

  • Группа изометрий пр.-ва : ().
1.2.3  Подгруппы, классы смежности, циклические группы
  • Подгруппа: . Подгруппа, порожденная мн.-вом : — наименьшая подгруппа, содержащая .
  • Утверждение: , а также . Пример: .
  • Отношения и : () и (). Утверждение: и .
  • Множества классов смежности: и . Теорема Лагранжа. Индекс: .

    Теорема Лагранжа. Пусть — группа, и ; тогда (и, значит, делит ).

  • Порядок элемента: (). Утверждение: пусть ; тогда .
  • Лемма о порядке элемента. Пусть — группа и ; тогда и, если , то делит и .
  • Теорема об обратимых остатках.
    (1) Пусть и ; тогда .
    (2) Пусть ; тогда (в частности, если , то ).
    (3) Пусть , и не делит ; тогда (это малая теорема Ферма).
  • Циклическая группа: . Примеры: для любых , , для некоторых . Теорема о циклических группах.

    Теорема о циклических группах. Пусть — циклическая группа и ; тогда, если , то , и, если , то .

1.2.4  Нормальные подгруппы, факторгруппы, прямое произведение групп
  • Нормальная подгруппа: . Пример: .
  • Автоморфизм сопряжения при помощи элемента : . Отношение сопряженности: и сопряжены.
  • Нормальная подгруппа, порожденная множеством : — наименьшая нормальная подгруппа, содержащая . Утверждение: .
  • Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.

    Теорема о слоях и ядре гомоморфизма. Пусть — группы и ; тогда
    (1) для любых и выполнено ;
    (2) — инъекция, если и только если .

  • Факторгруппа: с фактороперациями (). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: .

    Теорема о гомоморфизме. Пусть — группы и ; тогда .

  • Прямое произведение групп: с покомпонентными операциями. Утверждение: и — гомоморфизмы групп.
  • Теорема о прямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
    (1) , и ;
    (2) ;
    (3) если , то в пункте (2) условие "" можно заменить на условие "".

1.3  Кольца (часть 1)

1.3.1  Определения и конструкции, связанные с кольцами
  • Кольцо — абелева группа по сложению и моноид по умножению, бинарные операции в которых связаны дистрибутивностью. Гомоморфизмы колец.
  • Примеры: числовые кольца, кольца функций. Аддитивная и мультипликативная группы кольца : и . Характеристика кольца : .
  • Подкольцо: . Подкольцо, порожд. мн.-вом : . Кольца вида .
  • Идеал: . Идеал, порожд. мн.-вом : . Идеал, порожд. элементом коммут. кольца : .
  • Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.

    Теорема о слоях и ядре гомоморфизма. Пусть — кольца и ; тогда
    (1) для любых и выполнено ;
    (2) — инъекция, если и только если .

  • Факторкольцо: с фактороперациями (). Теорема о гомоморфизме. Прямое произведение колец: с покомпонентными операциями.

    Теорема о гомоморфизме. Пусть — кольца и ; тогда .

  • Кольцо без делителей нуля: и . Область целостности — коммут. кольцо без делит. нуля. Тело: .
  • Поле — коммутативное тело. Гомоморфизмы полей. Примеры: числовые поля, поля , где . Подполя. Подполе, порожденное мн.-вом.
1.3.2  Кольца многочленов
  • Кольцо многочленов от переменной над кольцом : ; отождествл.-е и ; общий вид многочлена: .
  • Умножение в . Степень и старший коэфф.-т. Утверждение: . Делимость в ( — комм. кольцо): .
  • Неприводимые многочлены в : . Пример: ( — поле).
  • Лемма о делении с остатком. Операции и (старший коэфф.-т многочл. обратим): и .

    Лемма о делении с остатком. Пусть — коммутативное кольцо, и старший коэффициент многочлена обратим; тогда
    существуют единственные такие многочлены , что и .

  • Кольцо остатков по модулю многочлена ( — поле, ): . Утверждение: .
  • Сопоставление многочлену полиномиальной функции — гомоморфизм ( — комм. кольцо, ).
  • Обозначение: . Корни многочлена : . Теорема Безу. Теорема о корнях многочлена и следствие из нее.

    Теорема Безу. Пусть — коммутативное кольцо, и ; тогда (и, значит, ).

    Теорема о корнях многочлена. Пусть — область целостности и ; тогда .

    Следствие из теоремы о корнях многочлена. Пусть — область целостности, , и ; тогда .

1.3.3  Поле комплексных чисел
  • Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
  • Вещественная и мнимая части: и . Сопряжение: . Модуль: .
  • Теорема о свойствах комплексных чисел.
    (1) Для любых выполнено и, если , то (и, значит, — поле).
    (2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Единичная окружность в : . Экспонента от комплексного числа : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
    (2) Для любых выполнено (и, значит, ).

  • Тригонометрическая форма компл. числа: . Утверждение: .
  • Группа корней -й степени из : . Первообразные корни -й степени из .
  • Формула Кардано (без доказательства). Алгебраическая замкнутость поля : пусть ; тогда (без доказательства).
  • Лемма о вещественных многочленах. Пусть , и ; тогда .
1.3.4  Тело кватернионов
  • Кольцо кватернионов: , где , а также , , .
  • Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
  • Чистые кватернионы: . Скалярное произв.-е, векторное произв.-е и норма в : , и .
  • Лемма об умножении кватернионов. Сопряжение: . Модуль: . Утверждение: .

    Лемма об умножении кватернионов. Для любых и выполнено .

  • Теорема о свойствах кватернионов.
    (1) Для любых выполнено и, если , то (и, значит, — тело).
    (2) Для любых выполнено и (и, значит, отображение — антиавтоморфизм тела ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Трехмерная сфера: . Утверждение: пусть ; тогда и .
  • Изометрии в : (доказательство только включения ).
  • Изометрии в : (док.-во только ).