Машинное обучение 2015 — различия между версиями
Материал из SEWiki
Ekaterina (обсуждение | вклад) м |
Ekaterina (обсуждение | вклад) м |
||
Строка 76: | Строка 76: | ||
Условие -- [http://mit.spbau.ru/sewiki/images/f/fc/ML-homework9.pdf Домашнее задание 9]<br/> | Условие -- [http://mit.spbau.ru/sewiki/images/f/fc/ML-homework9.pdf Домашнее задание 9]<br/> | ||
− | + | ||
== Летучки в начале лекции. == | == Летучки в начале лекции. == | ||
[http://mit.spbau.ru/sewiki/images/5/51/Quiz2.pdf 18 февраля]<br/> | [http://mit.spbau.ru/sewiki/images/5/51/Quiz2.pdf 18 февраля]<br/> | ||
Строка 90: | Строка 90: | ||
[http://mit.spbau.ru/sewiki/images/1/1c/ML-test12.pdf 8 мая]<br/> | [http://mit.spbau.ru/sewiki/images/1/1c/ML-test12.pdf 8 мая]<br/> | ||
[http://mit.spbau.ru/sewiki/images/0/05/ML-test13.pdf 15 мая]<br/> | [http://mit.spbau.ru/sewiki/images/0/05/ML-test13.pdf 15 мая]<br/> | ||
− | + | ||
== Результаты == | == Результаты == |
Текущая версия на 17:00, 12 апреля 2017
Лекции — Екатерина Алексеевна Тузова (kt@jetbrains.com)
Содержание
Лекции
1. 11 февраля, "Введение"
2. 18 февраля, "Метрические методы классификации"
3. 27 февраля, "Иерархическая кластеризация"
4. 6 марта, "Кластеризация. Графовые и статистические алгоритмы"
5. 13 марта, "Линейные классификаторы"
6. 20 марта, "Метод опорных векторов"
7. 27 марта, "Python и Numpy"
8. 3 апреля, "Деревья принятия решений"
9. 10 апреля, "Байесовские методы классификации"
10. 17 апреля, "EM-алгоритм"
11. 24 апреля, "Линейная регрессия"
12. 8 мая, "Нейронные сети"
13. 15 мая, "Разбор результатов контеста"
Дополнительные источники по машинному обучению
- G. James, D. Witten, T. Hastie, R. Tibshirani: "An Introduction to Statistical Learning"
- Christopher M. Bishop "Pattern Recognition and Machine Learning"
- Kevin P. Murphy "Machine Learning: A Probabilistic Perspective"
- К.В. Воронцов: видеолекции 2014, материалы (в т.ч. пособие)
- Andrew Ng http://ml-class.org/
- Примеры реализации алгоритмов на Python: Программируем коллективный разум
Дополнительные заметки
- Mining of Massive Datasets (Ullman, Leskovec, Rajaraman) (в частности, разделы 3.4—3.8 про Locality-Sensitive Hashing, еще в книге много других интересных подходов для больших объемов данных, в т.ч. MapReduce, PageRank)