Алгебра phys 1 апрель–май — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 6: Строка 6:
 
<ul><li>Эвалюация <math>\biggl(\!\begin{align}\mathrm{eval}_a\colon K[x]&\to\mathrm{End}(V)\\f&\mapsto f(a)\end{align}\!\biggr)</math> — гомоморфизм. Кольцо, порожденное лин. оператором <math>a</math>: <math>K[a]=\{f(a)\mid f\in K[x]\}=\mathrm{Im}\,\mathrm{eval}_a\le\mathrm{End}(V)</math>.
 
<ul><li>Эвалюация <math>\biggl(\!\begin{align}\mathrm{eval}_a\colon K[x]&\to\mathrm{End}(V)\\f&\mapsto f(a)\end{align}\!\biggr)</math> — гомоморфизм. Кольцо, порожденное лин. оператором <math>a</math>: <math>K[a]=\{f(a)\mid f\in K[x]\}=\mathrm{Im}\,\mathrm{eval}_a\le\mathrm{End}(V)</math>.
 
<li>Минимальный многочлен лин. оператора <math>a</math>: <math>\mu_a(a)=0</math>, <math>\mu_a</math> нормирован, <math>\deg\mu_a=\min\{\deg f\mid f\in K[x]\!\setminus\!\{0\}\,\land\,f(a)=0\}</math>; <math>(\mu_a)=\mathrm{Ker}\,\mathrm{eval}_a\trianglelefteq K[x]</math>.
 
<li>Минимальный многочлен лин. оператора <math>a</math>: <math>\mu_a(a)=0</math>, <math>\mu_a</math> нормирован, <math>\deg\mu_a=\min\{\deg f\mid f\in K[x]\!\setminus\!\{0\}\,\land\,f(a)=0\}</math>; <math>(\mu_a)=\mathrm{Ker}\,\mathrm{eval}_a\trianglelefteq K[x]</math>.
<li><u>Теорема о ядрах многочленов от линейного оператора.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) если <math>f\in K[x]</math>, то <math>a\bigl(\mathrm{Ker}\,f(a)\bigr)\subseteq\mathrm{Ker}\,f(a)</math>, а также, если <math>f,g\in K[x]</math> и <math>f</math> делит <math>g</math>, то <math>\,\mathrm{Ker}\,f(a)\subseteq\mathrm{Ker}\,g(a)</math>;<br>(2) если <math>k\in\mathbb N_0</math>, <math>f_1,\ldots,f_k\in K[x]</math> и многочлены <math>f_1,\ldots,f_k</math> попарно взаимно просты, то <math>\,\mathrm{Ker}\,(f_1\cdot\ldots\cdot f_k)(a)=\mathrm{Ker}\,f_1(a)\oplus\ldots\oplus\mathrm{Ker}\,f_k(a)</math><br>(и, значит, если <math>(f_1\cdot\ldots\cdot f_k)(a)=0</math>, то <math>V=\mathrm{Ker}\,f_1(a)\oplus\ldots\oplus\mathrm{Ker}\,f_k(a)</math>).</i>
+
<li><u>Теорема о ядрах многочленов от линейного оператора.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) если <math>f\in K[x]</math>, то <math>a\bigl(\mathrm{Ker}\,f(a)\bigr)\subseteq\mathrm{Ker}\,f(a)</math> (то есть <math>\mathrm{Ker}\,f(a)</math> — <math>a</math>-инвариантное подпространство);<br>(3) если <math>f,g\in K[x]</math> и <math>f</math> делит <math>g</math>, то <math>\,\mathrm{Ker}\,f(a)\subseteq\mathrm{Ker}\,g(a)</math>;<br>(2) если <math>k\in\mathbb N_0</math>, <math>f_1,\ldots,f_k\in K[x]</math> и многочлены <math>f_1,\ldots,f_k</math> попарно взаимно просты, то <math>\,\mathrm{Ker}\,(f_1\cdot\ldots\cdot f_k)(a)=\mathrm{Ker}\,f_1(a)\oplus\ldots\oplus\mathrm{Ker}\,f_k(a)</math><br>(и, значит, <math>(f_1\cdot\ldots\cdot f_k)(a)=0\;\Leftrightarrow\,V=\mathrm{Ker}\,f_1(a)\oplus\ldots\oplus\mathrm{Ker}\,f_k(a)</math>).</i>
 
<li>Проектор (идемпотент): <math>a^2=a\,\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,a</math>. Отражение: <math>a^2=\mathrm{id}_V\,\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,(a+\mathrm{id}_V)</math> (здесь <math>\mathrm{char}\,K\ne2</math>).
 
<li>Проектор (идемпотент): <math>a^2=a\,\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,a</math>. Отражение: <math>a^2=\mathrm{id}_V\,\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,(a+\mathrm{id}_V)</math> (здесь <math>\mathrm{char}\,K\ne2</math>).
 
<li>Собственные число и вектор лин. операт. <math>a</math>: <math>a(v)=c\,v\,\land\,v\ne0</math>. Спектр лин. операт. <math>a</math>: <math>\mathrm{Spec}(a)=\{c\in K\mid(a-c\cdot\mathrm{id}_V)\notin\mathrm{GL}(V)\}</math>. Лемма о спектре.
 
<li>Собственные число и вектор лин. операт. <math>a</math>: <math>a(v)=c\,v\,\land\,v\ne0</math>. Спектр лин. операт. <math>a</math>: <math>\mathrm{Spec}(a)=\{c\in K\mid(a-c\cdot\mathrm{id}_V)\notin\mathrm{GL}(V)\}</math>. Лемма о спектре.
Строка 15: Строка 15:
 
<p><u>Теорема Гамильтона–Кэли.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда <math>\chi_a(a)=0</math>.</i></p>
 
<p><u>Теорема Гамильтона–Кэли.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда <math>\chi_a(a)=0</math>.</i></p>
 
<li>Кратности: <math>\alpha(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\chi_a\}</math> (алгебраич. кратность), <math>\beta(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\mu_a\}</math>. Теорема о минимальном многочлене.
 
<li>Кратности: <math>\alpha(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\chi_a\}</math> (алгебраич. кратность), <math>\beta(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\mu_a\}</math>. Теорема о минимальном многочлене.
<p><u>Теорема о минимальном многочлене.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) многочлен <math>\mu_a</math> делит многочлен <math>\chi_a</math> (и, значит, <math>\forall\,c\in K\;\bigl(\beta(a,c)\le\alpha(a,c)\bigr)</math>);<br>(2) <math>\mathrm{Spec}(a)=\{c\in K\mid\mu_a(c)=0\}</math> (и, значит, <math>|\mathrm{Spec}(a)|\le\deg\mu_a</math>).</i></p></ul>
+
<p><u>Теорема о минимальном многочлене.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) <math>\mu_a</math> делит <math>\chi_a</math> (и, значит, для любых <math>c\in K</math> выполнено <math>\beta(a,c)\le\alpha(a,c)</math>);<br>(2) <math>\mathrm{Spec}(a)=\{c\in K\mid\mu_a(c)=0\}</math>.</i></p></ul>
 +
 
 +
<h5>2.3.2&nbsp; Собственные, обобщенные собственные и корневые подпространства линейного оператора</h5>
 +
<ul><li>Собственные подпространства: <math>V_1(a,c)=\mathrm{Ker}\,(a-c\cdot\mathrm{id}_V)</math>; геометрическая кратность: <math>\gamma(a,c)=\dim V_1(a,c)</math>. Лемма о собственных подпространствах.
 +
<p><u>Лемма о собственных подпространствах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>a\in\mathrm{End}(V)</math>, <math>k\in\mathbb N_0</math>, <math>c_1,\ldots,c_k\in K</math> и<br><math>c_1,\ldots,c_k</math> попарно различны; тогда<br>(1) <math>\mathrm{Ker}\,((x-c_1)\cdot\ldots\cdot(x-c_k))(a)=V_1(a,c_1)\oplus\ldots\oplus V_1(a,c_k)</math>;<br>(2) если <math>C_1\subseteq V_1(a,c_1),\ldots,C_k\subseteq V_k(a,c_k)</math> и <math>C_1,\ldots,C_k</math> — независимые множества, то <math>C_1\cup\ldots\cup C_k</math> — независимое множество;<br>(3) если <math>\dim V<\infty</math>, то для любых <math>c\in K</math> выполнено <math>\gamma(a,c)\le\alpha(a,c)</math>.</i></p>
 +
<li><u>Теорема о диагонализуемых линейных операторах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>следующие утверждения эквивалентны:<br>(у1) существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что <math>a_e^e</math> — диагональная матрица;<br>(у2) <math>\mu_a=\!\!\!\prod_{c\in\mathrm{Spec}(a)}\!\!\!(x-c)</math> (то есть многочлен <math>\mu_a</math> раскладывается без кратностей в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math>);<br>(у3) <math>V=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!V_1(a,c)</math> (то есть пространство <math>V</math> раскладывается в прямую сумму собственных подпространств линейного оператора <math>a</math>);<br>(у4) <math>\dim V=\!\!\!\sum_{c\in\mathrm{Spec}(a)}\!\!\!\gamma(a,c)</math>.</i>
 +
<li>Обобщенные собственные подпр.-ва: <math>V_j(a,c)=\mathrm{Ker}\,(a-c\cdot\mathrm{id}_V)^j</math> — <math>a</math>-инвариантные подпр.-ва. Лемма об обобщенных собственных подпространствах.
 +
<p><u>Лемма об обобщенных собственных подпространствах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и <math>c\in K</math>; тогда<br>(1) для любых <math>j\in\mathbb N_0</math> выполнено <math>V_j(a,c)\subseteq V_{j+1}(a,c)</math> и, если <math>V_j(a,c)=V_{j+1}(a,c)</math>, то <math>V_{j+1}(a,c)=V_{j+2}(a,c)</math>;<br>(2) для любых <math>j\in\mathbb N_0</math> выполнено <math>\beta(a,c)\le j\;\Leftrightarrow\,V_{\beta(a,c)}(a,c)=V_j(a,c)</math>;<br>(3) <math>\{0\}\subset V_1(a,c)\subset\ldots\subset V_{\beta(a,c)-1}(a,c)\subset V_{\beta(a,c)}(a,c)=V_{\beta(a,c)+1}(a,c)=\ldots=V_{\alpha(a,c)}(a,c)=\ldots</math>.</i></p>
 +
<li>Жордановы клетки: <math>\mathrm{jc}_n(c)=c\cdot\mathrm{id}_n+\underline e_1^2+\ldots+\underline e_{n-1}^n</math> (если <math>a=\mathrm{jc}_n(c)</math>, то <math>\mu_a=\chi_a=(x-c)^n</math> и <math>\forall\,j\in\{0,\ldots,n\}\;\bigl(V_j(a,c)=\langle\underline e_1,\ldots,\underline e_j\rangle\bigr)</math>).
 +
<li>Корневые подпространства: <math>V(a,c)=V_{\beta(a,c)}(a,c)=V_{\alpha(a,c)}(a,c)</math>. Относительные геометрические кратности: <math>\gamma_j(a,c)=\dim V_j(a,c)-\dim V_{j-1}(a,c)</math>.
 +
<li><u>Теорема о разложении в прямую сумму корневых подпространств.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>,<br><math>a\in\mathrm{End}(V)</math> и многочлен <math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то это условие выполнено<br>для любого линейного оператора <math>a</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>); тогда<br>(1) <math>V=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!V(a,c)</math> (то есть пространство <math>V</math> раскладывается в прямую сумму корневых подпространств линейного оператора <math>a</math>);<br>(2) для любых <math>c\in\mathrm{Spec}(a)</math>, обозначая через <math>\mathrm{nil}(a,c)</math> оператор <math>(a-c\cdot\mathrm{id}_V)|_{V(a,c)\to V(a,c)}</math>, имеем следующие факты: для любых <math>j\in\mathbb N_0</math> выполнено<br><math>\mathrm{Ker}\,\mathrm{nil}(a,c)^j=V_j(a,c)</math>, а также <math>\mathrm{nil}(a,c)</math> — нильпотентный линейный оператор и <math>\dim V(a,c)=\alpha(a,c)</math>.</i></ul>

Версия 04:40, 23 марта 2017

2  Линейная алгебра

2.3  Линейные операторы (часть 2)

2.3.1  Многочлены от линейных операторов, спектр и характеристический многочлен линейного оператора
  • Эвалюация — гомоморфизм. Кольцо, порожденное лин. оператором : .
  • Минимальный многочлен лин. оператора : , нормирован, ; .
  • Теорема о ядрах многочленов от линейного оператора. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) если , то (то есть -инвариантное подпространство);
    (3) если и делит , то ;
    (2) если , и многочлены попарно взаимно просты, то
    (и, значит, ).
  • Проектор (идемпотент): . Отражение: (здесь ).
  • Собственные число и вектор лин. операт. : . Спектр лин. операт. : . Лемма о спектре.

    Лемма о спектре. Пусть — поле, — векторное простр.-во над полем и ; тогда
    и, если , то "" можно заменить на "".

  • Характеристический многочлен матрицы : . Характеристический многочлен лин. оператора : . Корректность опред.-я.
  • След линейного оператора : . Корректность определения. Теорема о спектре и характеристическом многочлене. Теорема Гамильтона–Кэли.

    Теорема о спектре и характеристическом многочлене. Пусть — поле, — вект. простр.-во над полем , и ; тогда
    (1) (и, значит, );
    (2) ;
    (3) если (то есть — нильпотентный линейный оператор), то .

    Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .

  • Кратности: (алгебраич. кратность), . Теорема о минимальном многочлене.

    Теорема о минимальном многочлене. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) делит (и, значит, для любых выполнено );
    (2) .

2.3.2  Собственные, обобщенные собственные и корневые подпространства линейного оператора
  • Собственные подпространства: ; геометрическая кратность: . Лемма о собственных подпространствах.

    Лемма о собственных подпространствах. Пусть — поле, — векторное пространство над полем , , , и
    попарно различны; тогда
    (1) ;
    (2) если и — независимые множества, то — независимое множество;
    (3) если , то для любых выполнено .

  • Теорема о диагонализуемых линейных операторах. Пусть — поле, — векторное пространство над полем , и ; тогда
    следующие утверждения эквивалентны:
    (у1) существует такой упорядоченный базис , что — диагональная матрица;
    (у2) (то есть многочлен раскладывается без кратностей в произведение многочленов степени в кольце );
    (у3) (то есть пространство раскладывается в прямую сумму собственных подпространств линейного оператора );
    (у4) .
  • Обобщенные собственные подпр.-ва: -инвариантные подпр.-ва. Лемма об обобщенных собственных подпространствах.

    Лемма об обобщенных собственных подпространствах. Пусть — поле, — вект. пр.-во над , , и ; тогда
    (1) для любых выполнено и, если , то ;
    (2) для любых выполнено ;
    (3) .

  • Жордановы клетки: (если , то и ).
  • Корневые подпространства: . Относительные геометрические кратности: .
  • Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем , ,
    и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено
    для любого линейного оператора в силу алгебраической замкнутости поля ); тогда
    (1) (то есть пространство раскладывается в прямую сумму корневых подпространств линейного оператора );
    (2) для любых , обозначая через оператор , имеем следующие факты: для любых выполнено
    , а также — нильпотентный линейный оператор и .