
Contents

4 Unambiguous grammars 2
4.1 Syntactic ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

4.1.1 Ambiguity in natural languages . . . . . . . . . . . . . . . . . . . . . . . . 2
4.1.2 Ambiguity in programming languages . . . . . . . . . . . . . . . . . . . . 2
4.1.3 Unambiguous grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4.1.4 Unambiguous conjunctive and Boolean grammars . . . . . . . . . . . . . . 3

4.2 Limitations of unambiguous grammars . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2.1 Combinatorial methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2.2 Analytic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.3 Closure properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3.1 Non-closure under complementation . . . . . . . . . . . . . . . . . . . . . 7

Bibliography 8

Name index 9

1



Chapter 4

Unambiguous grammars

4.1 Syntactic ambiguity

4.1.1 Ambiguity in natural languages

Ambiguity essential in natural languages.
The sentence “I saw a man on the hill with a telescope” admits up to five different readings.
In English, many the same word may act as different parts of speech, and thus many sentences

can be read in different ways. Three interpretations of “time flies”: as a sentence that the time
does fly, as a fragment describing a hypothetical genus of insects, and as a command to measure
time in some relation to insects. Chomsky: “time flies like an arrow”, “fruit flies like a banana”.
Adding one more: “swallow flies like a frog”.

Every grammar for a natural language must describe all these syntactic structures, and
therefore has to be ambiguous.

4.1.2 Ambiguity in programming languages

Programming languages are designed to be unambiguous.
A good grammar should be unambiguous.
The following grammar for expressions is unsatisfactory.

E → E + E | E ∗ E | 1

But can be fixed by writing a more precise grammar.
Another unsatisfactory example, which found its way into the first version of Algol 60, before

it was noted by Cantor [1].

S → if E then S | if E then S else S

(two parses of if x then if y then s else t) Unambiguity in the definition. Requires a
special mention to disambiguate, and then a more precise grammar.

In C: x=a,b; x=f(a); x=f(a, b);

4.1.3 Unambiguous grammars

Definition 4.1. An ordinary grammar G is called unambiguous if every string w ∈ L(G) has a
unique parse tree.

Let a concatenation L1 · . . . ·Lk be called unambiguous if every string w ∈ L1 · . . . ·Lk admits
a unique partition w = u1 . . . uk with ui ∈ Li.

Definition 4.1 in more detail. Note two types of ambiguity.

2



Unambiguous grammars 3

I. Unambiguous choice of a rule: if different rules for every single category symbol A
generate disjoint languages.

II. Unambiguous concatenation: if for every rule A → X1 . . . X`, the concatenation
LG(X1) · . . . · LG(X`) is unambiguous, that is,

Definition 4.2. An ordinary grammar is called unambiguous if it satisfies the above two condi-
tions.

For an ordinary grammar without useless symbols, Definition 4.1 and 4.2 are equivalent.

Example 4.1. The language { akb`cm | k = ` or ` = m}: is defined by the following grammar.

S → AB | DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

According to Definition 4.2, this grammar is ambiguous, because every string of the form anbncn

can be obtained both as AB and as DC, and thus there is an ambiguity of choice between the
rules S → AB and S → DC.

Later it shall be proved that every ordinary grammar for this language is ambiguous.

Example 4.2. Consider the following grammar for the language {ww | w ∈ {a, b}∗}.

S → AB | BA | O
A→ XAX | a
B → XBX | b
X → a | b
O → XXO | X

This grammar demonstrates both types of ambiguity. First, the choice between the rules S → AB
and S → BA is ambiguous on such strings as w = abba. Secondly, the concatenation AB is
ambiguous, as a string aabb can be represented both as a · abb and as aab · b. The concatenation
BA is simularly ambiguous.

4.1.4 Unambiguous conjunctive and Boolean grammars

For Boolean grammars, Definition 4.1 is not applicable, because a parse tree contains only a
partial information about the derivation of a string. Definition 4.2 works as follows.

Definition 4.3. Let G = (Σ, N,R, S) be a Boolean grammar. Then

I. the choice of a rule in G is unambiguous, if different rules for every single nonterminal
A generate disjoint languages, that is, for every string w there exists at most one rule
A → α1 & . . .&αm &¬β1 & . . .&¬βn with w ∈ LG(α1) ∩ . . . ∩ LG(αm) and w /∈ LG(β1) ∪
. . . ∪ LG(βn).

II. concatenation in G is said to be unambiguous, if for every conjunct ±α = ±X1 . . . X`, the
concatenation LG(X1) · . . . · LG(X`) is unambiguous.

If both conditions are satisfied, the grammar is called unambiguous.



4 A. Okhotin, “Formal grammars” (chapter 4 draft, September 12, 2014)

Example 4.1′. The language { akb`cm | k = ` or ` = m} from Example 4.1 is generated by the
following unambiguous Boolean grammar.

S → AB | DC &¬AB
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

This transformation can be extended to a general method.

4.2 Limitations of unambiguous grammars

4.2.1 Combinatorial methods

Using pumping arguments to construct multiple parse trees for a single string, by pumping
two different shorter strings. Ogden’s lemma is particularly helpful (that was Ogden’s original
motivation).

Proposition 4.1 (Parikh [9]; Chomsky, Schützenberger [2]). Every ordinary grammar that de-
scribes the language { aibncn | i, n > 0} ∪ { ambmcj |m, j > 0} from Example 4.1 is ambiguous.

Sketch of a proof. The proof follows the method of Ogden. Consider any grammar G =
(Σ, N,R, S) with L(G) = L. Let p be the constant given by Ogden’s lemma. First, pump
w = apbpcp+p! with distinguished positions ap to obtain ŵ = ap+p!bp+p!cp+p!. Secondly, pump
w′ = ap+p!bpcp with distinguished positions cp to obtain the same string ŵ.

The two resulting parse trees are different, because the first tree (the one obtained by pumping
w) includes a subtree that contains at least p! symbols b and at least p! symbols a, but no symbols
c. On the other hand, the second tree has a subtree with at least p! symbols b and at least p!
symbols c, but no symbols a. No single tree with only p + p! b-leaves could contain two such
subtrees.

Theorem 4.1. Unambiguous ordinary languages are closed under intersection with regular lan-
guages.

Proof. The same construction as for the whole class of ordinary grammars. It preserves unam-
biguity.

Example 4.3. The following language is not described by any unambiguous ordinary grammar.

{ ak1b . . . ak`b | ` > 1, k1, . . . , k` > 0, ∃i : ki = i}

Sketch of a proof.

Example 4.4 (Crestin). The following language is not described by any unambiguous ordinary
grammar.

{w1w2 | w1, w2 ∈ {a, b}∗, w1 = wR
1 , w2 = wR

2 }



Unambiguous grammars 5

4.2.2 Analytic methods

Definition 4.4. Let L ⊆ Σ∗ be a language. For each length n > 0, denote by cLn the number of
strings of length n in L. Then the generating function of L is a complex function fL : C → C
defined by the following power series.

fL(z) =

∞∑
n=0

cLnz
n.

Example 4.5. The generating function of the language L = { anbn | n > 0} is

fL(z) = 1 + z2 + z4 + z6 + . . . =
1

1− z2
,

defined on the open unit disk.

How do the operations on languages affect their generating functions.
Note that cK∪Ln 6 cKn + cLn , and if the union is unambiguous (K ∩ L = ∅), then aK∪Ln =

cKn + cLn . Similarly, cKL
n 6

∑n
i=0 c

K
i · cLn−i, and if the concatenation is unambiguous, then

cKL
n =

∑n
i=0 c

K
i · cLn−i. For unambiguous union and concatenation, fK∪L(z) = fK(z)∪ fL(z) and

fK·L(z) = fK(z) · fL(z).

Example 4.6. The generating function of the language L′ = { bnc2n | n > 0} is

fL′(z) = 1 + z3 + z6 + z9 + . . . =
1

1− z3
,

and therefore the generating function of the language L ∪ L′ = { ambm+nc2n |m,n > 0} is

fL∪L′(z) = fL(z) · fL′(z) =
1

(1− z2)(1− z3)
.

Theorem 4.2 (Chomsky, Schützenberger [2]). If L is generated by an unambiguous ordinary
grammar, then its generating function is algebraic.

Proof. Transforming language equations defining a language into functional equations defining
its generating function,

For each language variable A ∈ N , define the corresponding functional variable fA(z). For
each language equation in the system,

A =
⋃

A→X1...X`∈R
X1 · . . . ·X`,

define the corresponding functional equation, where each union becomes a sum, concatenations
are translated to products, and every symbol of the alphabet is represented by a function f(z) =
z.

fA(z) =
∑

A→X1...X`∈R

∏̀
i=1

{
fXi(z), if Xi ∈ N
z, if Xi ∈ Σ

}
Each rule A→ ε is counted as a constant f(z) = 1.

Example: A = BC ∪ aDb ∪ {ε} to fA(z) = fB(z)fC(z) + z2fD(z) + 1.
Claim: if (L1, . . . , Ln) is a solution of the system of language equations, then (fL1 , . . . , fLn)

is a solution of the system of functional equations, which consists of algebraic functions by
definition.

In particular, fL(G)(z) is an algebraic function.



6 A. Okhotin, “Formal grammars” (chapter 4 draft, September 12, 2014)

Flajolet [3] demonstrated that many examples of languages have non-algebraic generating
functions.

Example 4.7 (Flajolet [3]). Consider the alphabet Σ = {a, b} and the languages

K = { anb2n | n > 1}∗a∗,
L = a{ bna2n | n > 1}∗b∗.

Each of them is generated by an unambiguous grammar. However, the generating function of
their union, fK∪L(z), is a transcendental function, and therefore K ∪ L is not an unambiguous
language.

Proof. The languages K and L have unambiguous grammars, and hence their generating func-
tions fK and fL are algebraic. Consider that fK∪L(z) = fK(z) + fL(z) − fK∩L(z). It is then
sufficient to prove that the function fK∩L(z) is transcendental.

The intersection K ∩ L equals

K ∩ L = {a, ab2, ab2a4, ab2a4b8, . . .},

and its generating function accordingly is

fK∩L(z) =
∞∑
n=1

z2
n−1.

To see that it is transcendental, consider any number k > 2. Then the value of fK∩L(z) at a
rational point 1

k is

fK∩L( 1k ) =
∞∑
n=1

1

k2n−1
.

As proved by Liouville [7], this number is transcendental. Therefore, so is fK∪L( 1k ), and then
the function fK∪L must be transcendental.

Example 4.8 (Goldstine). Consider the language { ak1b . . . ak`b | ` > 1, k1, . . . , k` > 0, ∃i : ki 6=
i}, which is defined by the following grammar. ***TBW*** Every ordinary grammar for this
language is ambiguous.

Example 4.9 (Petersen [10]). Let Σ = {a, b} and define the language of so-called prim-
itive strings, that is, strings not representable as a power of any shorter string: L =
{wn | w ∈ {a, b}∗, n > 2}. It is not known whether this language is ordinary, but there is a
proof that there is no unambiguous ordinary grammar for this language.

Exercises

4.2.1. Prove that every ordinary grammar generating the language {w1w2 |w1, w2 ∈ {a, b}∗, w1 =
wR
1 , w2 = wR

2 } is ambiguous.

4.2.2. Prove that there is no unambiguous ordinary grammar for the language { akb`cmdn | k =
m ∨ ` = n} (this was the original example given by Parikh [9]).



Unambiguous grammars 7

4.3 Closure properties

Theorem 4.3. The unambiguous languages are not closed under union and intersection.

Proof. Consider the languages L1 = { aibncn | i, n > 0} and L2 = { ambmcj |m, j > 0}. Each
of them is generated by an unambiguous grammar, which is a part of Example 4.1. However,
their union L1 ∪ L2 has no unambiguous ordinary grammar by Proposition 4.1, whereas their
intersection L1 ∩ L2 = { anbncn | n > 0} has no ordinary grammar at all.

Theorem 4.4. The unambiguous ordinary (conjunctive, Boolean) languages are closed under
quotient with a single symbol.

Proof. Let G = (Σ, N,R, S) be a Boolean grammar in the binary normal form, let a ∈ Σ.
Construct a new grammar G′ = (Σ, N ∪N ′, R ∪R′, S′), where N ′ = {A′ | A ∈ N} and the new
rules are:

A′ → B1C
′
1& . . .&BmC

′
m&¬D1E

′
1& . . .&¬DnE

′
n&¬ε (A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬DnEn&¬ε ∈ R)

A′ → ε (A→ a ∈ R)

Then LG′(A) = LG(A) and LG′(A′) = LG(A′)a−1 for all A ∈ N , and, in particular, L(G′) =
L(G)a−1.

Theorem 4.5. The unambiguous languages are not closed under concatenation with a two-
element set.

Proof. Assume that they are. Consider the language L = { ambmcn|m,n > 0}∪{ ambncnd|m,n >
0}, which has an unambiguous grammar. Then the language(

(L · {ε, d}) ∩ a∗b∗c∗d
)
· d−1 = { ambmcn |m,n > 0} ∪ { ambncn |m,n > 0}

should have an unambiguous grammar as well, which contradicts Proposition 4.1.

4.3.1 Non-closure under complementation

Theorem 4.6 (Hibbard, Ullian). The family of unambiguous languages is not closed under
complementation.



Bibliography

[1] D. J. Cantor, “On the ambiguity problem of Backus systems”, Journal of the ACM, 9:4
(1962), 477–479.

[2] N. Chomsky, M. P. Schützenberger, “The algebraic theory of context-free languages”, in:
Braffort, Hirschberg (Eds.), Computer Programming and Formal Systems, North-Holland
Publishing Company, Amsterdam, 1963, 118–161.

[3] Ph. Flajolet, “Analytic models and ambiguity of context-free languages”, Theoretical Com-
puter Science, 49 (1987), 283–309.

[4] S. Ginsburg, E. H. Spanier, “Bounded ALGOL-like languages”, Transactions of the AMS,
113:2 (1964), 333–368.

[5] S. Ginsburg, E. H. Spanier, “Semigroups, Presburger formulas and languages”, Pacific Jour-
nal of Mathematics, 16:2 (1966), 285–296.

[6] T. N. Hibbard, J. Ullian, “The independence of inherent ambiguity from complementedness
among context-free languages”, Journal of the ACM, 13:4 (1966), 588–593.

[7] J. Liouville, “Sur des classes très-étendues de quantités dont la valeur nŠest ni algébrique,
ni même réductible à des irrationnelles algébriques”, Journal de mathématiques pures et
appliquées, 1re série, 16 (1851), 133–142.

[8] A. Okhotin, “Unambiguous Boolean grammars”, Information and Computation, 206 (2008),
1234–1247.

[9] R. J. Parikh, “On context-free languages”, Journal of the ACM 13:4 (1966), 570–581.

[10] H. Petersen, “On the language of primitive words”, Theoretical Computer Science, 161:1–2
(1996), 141–156.

8

http://doi.acm.org/10.1145/321138.321145
http://dx.doi.org/10.1016/0304-3975(87)90011-9
http://www.jstor.org/stable/1994067
http://projecteuclid.org/euclid.pjm/1102994974
http://dx.doi.org/10.1145/321356.321366
http://dx.doi.org/10.1145/321356.321366
http://dx.doi.org/10.1016/j.ic.2008.03.023
http://doi.acm.org/10.1145/321356.321364
http://dx.doi.org/10.1016/0304-3975(95)00098-4


Index

Cantor, David G. (1935–2012), 2
Chomsky, Avram Noam (b. 1928), 4, 5
Crestin, J.-P., 4

Flajolet, Philippe (1948–2011), 6

Goldstine, Jonathan, 6

Hibbard, Thomas Nathaniel, 7

Liouville, Joseph (1809–1882), 6

Ogden, William Frederick, 4

Parikh, Rohit Jivanlal (b. 1936), 4, 6
Petersen, Holger, 6

Schützenberger, Marcel Paul (1920–1996), 4, 5

Ullian, Joseph Silbert, 7

9


	Unambiguous grammars
	Syntactic ambiguity
	Ambiguity in natural languages
	Ambiguity in programming languages
	Unambiguous grammars
	Unambiguous conjunctive and Boolean grammars

	Limitations of unambiguous grammars
	Combinatorial methods
	Analytic methods

	Closure properties
	Non-closure under complementation


	Bibliography
	Name index

