Полиномиальные алгоритмы для построения экспоненциальных. Конволюция подмножеств. (ДЗ)

14 октября 2017 г.

Пусть $f:U\to \mathbf{Z}$. Определим функцию $f\zeta$ следующим равенством $f\zeta(S)=\sum_{X\subseteq S}f(X)$. Аналогично $f\eta$ определяется равенством $f\eta(S)=\sum_{X\subseteq S}(-1)^{S\smallsetminus X}f(X)$

- 1. Постройте алгоритм для задачи MAX-2-SAT с временем работы $2^{\frac{wn}{3}}$, где n количество переменных, а w такое число, что умножение матриц можно посчитать за время n^w .
- 2. Решите задачу 4-Тав
LE Sum за $O^*(2^{\frac{n}{2}})$ времени используя $O^*(2^{\frac{n}{4}})$ памяти.
- 3. Пусть $f: U \to \mathbf{Z}$. Докажите, что $f\zeta \eta = f$.
- 4. Пусть $f: U \to \mathbf{Z}$ и для любого $S \subseteq U$ верно $|f(S)| \le M$. Более того все значения f(S) можно вычислить одновременно затратив не более $2^n \log(M) poly(n)$ времени. Покажите, что также одновременно все значения(для любого $S \subseteq U$) $(f\eta)(S)$ можно вычислить за время $2^n \log(M) poly(n)$.
- 5. Покажите, что алгоритм построенный на занятии для задачи о доминирующем множестве на самом деле работает быстрее заявленного времени. Для этого рассмотрите другую меру для задачи SET COVER, в которой вес элемента/множества зависит от его встречаемости/мощности. На занятии был представлен анализ и сказано, что любое значение $w_2 \in [0,1)$ подходит. Покажите, что это не так и укажите оптимальное значение w_2 .