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We present threshold DSS (digital signature standard) signatures
where the power to sign is shared by n players such that for a given
parameter t<n/2 any subset of 2t+ 1 signers can collaborate to produce
a valid DSS signature on any given message, but no subset of t corrupted
players can forge a signature (in particular, cannot learn the signature
key). In addition, we present a robust threshold DSS scheme that can
also tolerate n/3 payers who refuse to participate in the signature
protocol. We can also endure n/4 maliciously faulty players that generate
incorrect partial signatures at the time of signature computation. This
results in a highly secure and resilient DSS signature system applicable to
the protection of the secret signature key, the prevention of forgery, and
increased system availability. Assuming that secret communication
between the players is available, we prove the security of our protocols
solely based on the hardness of forging a regular DSS signature.  © 2001
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1. INTRODUCTION

Using a threshold signature scheme, digital signatures can be produced by a
group of players rather than by one party. In contrast to the regular signature
schemes where the signer is a single entity which holds the secret key, in threshold
signature schemes the secret key is shared by a group of n players. In order to
produce a valid signature on a given message m, individual players produce their
partial signatures on that message and then combine them into a full signature on
m. A distributed signature scheme achieves threshold ¢ <n if no coalition of ¢ (or
less) players can produce a new valid signature, even after the system has produced
many signatures on different messages. A signature resulting from a threshold
signature scheme is the same as if it was produced by a single signer possessing the
full secret signature key. In particular, the validity of this signature can be verified
by anyone who has the corresponding unique public verification key. In other
words, the fact that the signature was produced in a distributed fashion is trans-
parent to the recipient of the signature.

Threshold signatures are mainly motivated by the need to protect signature keys
from the attack of internal and external adversaries, as well as by the need that
arises in some organizations to have a group of employees agree on a given message
(or a document) before signing it. The former motivation becomes increasingly
important with the actual deployment of public key systems in practice. The signing
power of some entities, (e.g., a government agency, a bank, a certification
authority) inevitably invites attackers to try and “steal” this power. The goal of a
threshold signature scheme is twofold: To increase the availability of the signing
agency and at the same time to increase the protection against forgery by making
it harder for the adversary to learn the secret signature key. Notice that in par-
ticular, the threshold approach rules out the naive solution based on traditional
secret sharing, where the secret key is shared in a group but reconstructed by a
single player each time that a signature is to be produced. Such a protocol would
contradict the requirement that no ¢ (or less) players can ever produce a new valid
signature. In threshold schemes, multiple signatures are produced without an
exposure or an explicit reconstruction of the secret key.

A further crucial property of threshold signatures is that the output of the
signature scheme is the same as if produced in a centralized way (i.e., by a single
signer that holds the whole private key). In particular, verification of the signature
is independent of the way the signature generation is implemented. This is par-
ticularly important for standard signature schemes such as DSS (digital signature
standard). As an example, consider public key certificates signed with DSS
signatures. Applications that need to verify these certificates are programed to do
this verification regardless of the particular implementation (e.g., centralized or
distributed) of the signing algorithm by the issuing certification authority.

1.1. Previous Work

Threshold signatures are part of a general approach know as threshold cryp-
tography which was introduced by the works of Boyd [ Boy86], Croft and Harris
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[CH89], Desmedt [ Des88], and Desmedt and Frankel [ DF90]. This approach
has received considerable attention in the literature; we refer the reader to [ Des94 ]
for a survey of some of the work in this area. While the existence of polynomial-
time threshold signature schemes is implied by the general results on secure dis-
tributed computing of [ GMW87], the “threshold cryptography” line of research
focuses on providing efficient and practical solutions for specific signature schemes.
The improvement of the specific constructions, like the one presented in this paper,
over the generic methods is not only on the practical aspects of the constructions
but also in providing stronger analysis. This includes weakening the cryptographic
assumptions as well as providing stronger security reductions.

It is particularly important to provide threshold solutions for signatures schemes
used in practice, as those systems are the ones being deployed in the real world and
hence they are the ones that require real protection. As of today, RSA [ RSA78] and
DSS [ NIST91] appear as the two most used schemes in practice. For the case of
RSA signatures particular examples of threshold schemes can be found in [ DF91,
DDFY9%, FGY9, GJKR96b, Rab98].

DSS signatures turn out to be less amenable to sharing techniques than RSA or
even other ElGamal-type of signatures. For this reason, many variants of ElGamal-
type signatures, have been proposed that are more suitable to being turned into
threshold schemes (see, for example, [ Har94, PK96].) The specific case of DSS was
studied by Langford in [ Lan95]. Langford has overcome some of the DSS dif-
ficulties, exhibiting a solution which requires a group of n=1r>*—t+1 players in
order to tolerate up to ¢ players that might refuse to participate in the signature
protocol. Thus, for n given players this solution can resist up to ﬁ corrupted
parties.?

An analysis of threshold techniques applied to various ElGamal-like schemes
appears in an earlier paper by Cerecedo et al. [CMI93]. They present formal
definitions of threshold signature schemes and solutions based on the ElGamal
signature scheme which require only a linear increase in the number of signers
(compared to quadratic as in [Lan95]). Our work, independently developed,
follows an approach similar to [ CMI93]. However, by concentrating on the case
of DSS signatures we achieve significantly better properties in our solution and a
stronger security analysis. We discuss these properties next.

1.2. Our Contribution

We present several protocols for threshold DSS signatures which enjoy several
attractive properties listed below.

Provable security. Our work is the first to present a proof of security of the
proposed threshold DSS schemes which can be based solely on the unforgeability

2 Langford presents some additional schemes but of more limited applicability: a 2-out-of-n scheme
that withstands up to one faulty party and a general z-out-of-n scheme that uses precomputed tables of
one-time shares and that requires a higher level of trust for the generation of these tables. See [ Lan95]
for details.
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of regular DSS signatures. Previous work [CMI93] required additional cryp-
tographic assumptions.> That is, provided that secret communication between the
players is available, our schemes are secure if and only if the underlying signature
algorithm is secure. Clearly, this is the strongest security claim one can hope for on
any threshold signature scheme. We present rigorous proofs of the equivalent
security of DSS and our threshold schemes.

Efficiency. We introduce several schemes, each with a different trade-off
between security (the kind of adversary and the maximal number of corrupted
players tolerated) and efficiency (the number of operations required by a player in
order to complete the protocol). The achieved trade-offs are superior to the ones
encountered in previous works.

Flexible thresholds. In general, one would like to have higher thresholds,
because they achieve increased security at a given system cost (i.e., a given number
of servers). However, one should also consider the computational cost involved in
increasing the threshold of a given scheme. In our work we present threshold DSS
signatures schemes, where in order to tolerate ¢ gossip-only (i.e., eavesdropping)
faults we need 27+ 1 active signers during signature computation. In other words,
the adversarial threshold is 7 <”5*. This threshold goes down to 7 <251 if we allow
the possibility of ¢ faulty servers to refuse to participate in the signature protocol
(i.e., “fail-stop”, or halting faults). In all these cases we improve substantially on the
quadratic bound on [ Lan95]. In addition, we provide a robust threshold signature
scheme for DSS which can withstand the participation of dishonest signers during
the signature computation operation. Namely, we provide a mechanism that suc-
ceeds in constructing a valid signature even if the partial signatures contributed by
some of the signers are incorrect. The solution in [ Lan95] for DSS does not enjoy
this property. In fact, without a mechanism for detecting wrong partial signatures,
one may need to try an (exponential in f) number (,,7 ;) of subsets of signers before
finding a subset that generates a valid DSS signature.* In our case, we achieve a
robust threshold solution to DSS signatures tolerating ¢ faults: that is, ¢ or less
corrupted players will not be able to forge signatures and neither will they be able
to prevent the system from computing correct signatures by behaving in any
arbitrary malicious way. In this case our protocol achieves fault-tolerance of 25

1
4.

Assumed trust. Our schemes do not require trusting any particular party at any
time, including during the initial secret key generation. This is an important
property achieved by some other ElGamal-based threshold signatures schemes
(including the DSS solution in [ Lan95, CMI93]).

3 Although not explicitly mentioned in that paper the only way we were able to prove the security of
the protocols in [ CM193] was under an assumption which appears to be significantly stronger than the
unforgeability of DSS signatures. Also their scheme seems to be simulatable only in the presence of a
limited adversary. See Section 7 for more details.

*The robustness property has been known for some other shared ElGamal-like signature schemes; see
[CMI93, Har94]. As for threshold RSA, robust solutions have been only recently found (see [ FGY96,
GJKRI96b]).
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Proactive signatures. Remarkably, our solutions for robust threshold DSS
signatures can be proactivized using the recent techniques of [ HIJKY97] (based on
proactive secret sharing of the signature key [ HIKY951]). In this way, one can keep
the DSS signature key (and its public key counterpart) fixed for a long time while
its shares can be refreshed periodically. An adversary that tries to break the
threshold signature scheme needs to corrupt ¢ servers in one single period of time
(which may be as short as one day, one week, etc.), as opposed to having the whole
lifetime of the key (e.g., 2 or 5 years) to do so. It is worth noting that in order to
obtain a proactive solution for DSS our schemes do not need to be changed. The
proactivization is obtained by adding a periodic “share refreshment phase” that is
fully compatible with our threshold signature mechanisms.

1.3. Technical Overview

The threshold DSS signatures schemes need to deal with two technical dif-
ficulties. Combining shares of two secrets, ¢ and b, into shares of the product of
these secrets, ab, and producing shares for a secret a given the shares of its recipro-
! (computations are over a prime field Z 4)- We solve the first problem (shar-
ing of a product of secrets) using a single product of polynomials (with combined
degree 2¢ resulting in the need for only 27+ 1 active signers) [ BGWS88, B87]. For
the second problem, the sharing of a reciprocal, we use a protocol due to Bar-Ilan
and Beaver [ BB89]. In addition to these techniques we use many tools from other
works, such as verifiable secret sharing (both computational and information-
theoretic versions), shared generation—distribution of secrets, rerandomization of
secret shares, and more. In particular we make extended use of Pedersen’s uncondi-
tionally secure VSS protocols [ Ped91b] which allows us to reduce the computa-
tional assumptions needed in the proofs of our schemes. To achieve the robustness
of the < ”7! scheme we apply error correcting techniques due to Berlekamp and
Welch [ BW]. We prove the security of our schemes assuming the infeasibility of
forging DSS signatures.

cal a—

1.4. Organization

Section 2 introduces the model and definitions for threshold signatures and their
security. Section 3 recalls the DSS signature scheme. Section 4 describes some of the
existing tools in the literature that we use in our solutions. Section 5 shows how to
jointly and securely generate the initial DSS private key without the need of a
trusted party. Sections 6, 7, and 8 present our secure threshold DSS signatures.
Finally, Section 9 discusses the efficiency of our schemes.

2. MODEL AND DEFINITIONS

In this section we introduce our communication model and provide definitions of
secure threshold signature schemes. Related definitions can be found in [ CMI93].

Communication model. We assume that our computation model is composed of
a set of n players { Py, .., P,} who can be modeled by polynomial-time randomized
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Turing machines. They are connected by a complete network of private (i.e., untap-
pable) point-to-point channels. In addition, the players have access to a dedicated
broadcast channel; by dedicated we mean that if player P; broadcast a message, it
is received by every other player and recognized as coming from P;. These assump-
tions (privacy of the communication channels and dedication of the broadcast
channel) allow us to focus on a high-level description of the protocols. The privacy
of the point-to-point channels can be implemented with standard cryptographic
techniques, while the dedicated broadcast can be implemented over point-to-point
channels with a Byzantine agreement protocol.

We assume that the communication channels provide a partially synchronous
message delivery. In the design of the distributed cryptographic protocols it is often
assumed that the message delivery is fully synchronous. This assumption is
unrealistic in many cases where only partially synchronous message delivery is
provided (e.g., the Internet). By partially synchronous communication model we
mean that the messages sent on either a point-to-point or the broadcast channel are
received by their recipients within some fixed time bound. A failure of a com-
munication channel to deliver a message within this time bound can be treated as
a failure of the sending player. While messages arrive in this partially synchronous
manner, the protocol as a whole proceeds in synchronized rounds of communica-
tion; i.e., the honest players start a given round of a protocol at the same time. To
guarantee such round synchronization, and for simplicity of discussion, we assume
that the players are equipped with synchronized clocks.

Notice that in a partially synchronous communication model all messages can
still be delivered relatively fast, in which case, in every round of communication, the
malicious adversary can wait for the messages of the uncorrupted players to arrive,
then decide on his computation and communication for that round, and still get his
messages delivered to the honest parties on time. Therefore we should always
assume the worst case that the adversary speaks last in every communication
round. In the cryptographic protocols literature this is also known as a rushing
adversary.

The adversary. We assume that an adversary, .o/, can corrupt up to ¢ of the n
players in the network. We distinguish between three kinds of (increasingly power-
ful) adversaries:

o An eavesdropping adversary learns all the information stored at the corrup-
ted nodes and hears all the broadcasted messages.

o A halting adversary is an eavesdropping adversary that at the beginning of
each round may also cause corrupted players to stop sending messages for the
remaining part of the protocol (e.g., by crashing or disconnecting a machine).’

> We are assuming that rounds are atomic, i.e., that a player can crash only at the beginning of each
round. We do this just for the sake of simplicity. Indeed, the case of players that crash in the middle
of a round (after they sent messages to some players but not to others) can be easily reduced to the pre-
vious one. Just add one round of acknowledgments of received messages. If from those acknowledgments
it appears that a player crashed in the middle of a round, simply consider him dead for the whole round.
Another approach would be to consider this kind of adversary as a “malicious” one and apply our
solutions form Section 7 at the expense of added protocol and computational complexity.
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e A malicious adversary is an eavesdropping adversary that may also cause
corrupted players to divert from the specified protocol in any (possible malicious)
way.

We assume that the computational power of the adversary is adequately modeled
by a probabilistic polynomial time Turing machine. (In fact, it suffices for our
results to assume that the adversary cannot forge regular DSS signatures, which, in
turn, implies the infeasibility of computing discrete logarithms.)

Adversaries can also be categorized as static or adaptive. A static adversary
chooses the corrupted players at the beginning of the protocol, while an adaptive
one chooses them during the computation. In the following we will consider only
static adversaries. Recently it was proven in [C+99] that by making small
adjustments to the protocols in this paper, it is possible to tolerate adaptive
adversaries.

Given a protocol 2 the view of the adversary, denoted by ¥" . #&W.,(#) is defined
as the probability distribution (induced by the random coins of the players) on the
knowledge of the adversary, namely, the computational and memory history of all
the corrupted players and the public communications and output of the protocol.

Singature scheme. A signature scheme & is a triple of efficient randomized algo-
rithms (Key-Gen, Sig, Ver). Key-Gen is the key generator algorithm: on input a
random string, it outputs a pair (y, x), such that y is the public key and x is the
secret key of the signature scheme. Sig is the signing algorithm: on input a message
m and the secrete key x, it outputs sig, a signature of the message m. Since Sig can
be a randomized algorithm there might be several valid signatures sig of a message
m under the key x; with Sig(m, x) we will denote the set of such signatures. Ver is
the verification algorithm. On input a message m, the public key y, and a string sig,
it checks whether sig is a proper signature of m, i.e., if sig € Sig(m, x).

The notion of security for signature schemes was formally defined in [ GMR88]
in various flavors. The following definition captures the strongest of these notions:
existential unforgeability against adaptively chosen message attack.

DerFINITION 1. We say that a signature scheme % =(Key-Gen, Sig, Ver) is
unforgeable if no adversary who is given the public key y generated by Key-Gen,
and the signatures of k& messages m,, .., m, adaptively chosen, can produce the
signature on a new message m (ie., m¢ {my, .., m;}) with nonnegligible prob-
ability.

Threshold secret sharing. Given a secret value s we say that the values (s, ..., 5,,)
constitute a (¢, n)-threshold secret sharing of s if # (or less) of these values reveal no
information about s and if there is an efficient algorithm that outputs s having ¢ + 1
of the values s; as inputs.

Threshold signature schemes. Let % =(Key-Gen, Sig, Ver) be a signature
scheme. A (i, n)-threshold signature scheme 7% for & is a pair of protocols
(Thresh-Key-Gen, Thresh-Sig) for the set of players { Py, ..., P,}.

Thresh-Key-Gen is a distributed key generation protocol used by the players to
jointly generate a pair (y, x) of public—private keys. At the end of the protocol the
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private output of player P; is a value x; such that the values (xq, ..., x,) form a
(¢, n)-threshold secret sharing of x. The public output of the protocol contains the
public key y. Pairs (y, x) of public-secret key pairs are produced by Thresh-Key-
Gen with the same probability distribution as if they were generated by the
Key-Gen protocol of the regular signature scheme ..

Thresh-Sig is the distributed signature protocol. The private input of P; is the
value x;. The public inputs consists of a message m and the public key y. The out-
put of the protocol is a value sig € Sig(m, x). The verification algorithm is, therefore,
the same as in the regular signature scheme & .

Secure threshold signature schemes. Our definition of security includes both
unforgeability and robustness.

DErFINITION 2. We say that a (¢, n)-threshold signature scheme 7% = (Thresh-
Key-Gen, Thresh-Sig) is unforgeable, if no malicious adversary who corrupts at
most ¢ players can produce, with nonnegligible probability, the signature on any
new (i.e., previously unsigned) message m, given the view of the protocol Thresh-
Key-Gen and of the protocol Thresh-Sig on input messages mi,, ..., m, which the
adversary adaptively chose.

This is analogous to the notion of existential unforgeability under chosen
message attack as defined by Goldwasser et al. [ GMR88]. Notice that now the
adversary does not just see the signatures of & messages adaptively chosen, but
also the internal state of the corrupted players and the public communication of
the protocols. Following [GMR88] one can also define weaker notions of
unforgeability.

In order to prove unforgeability we use the concept of simulatable adversary view
[GMRS89, MR92, B92]. Intuitively, this means that the adversary who sees all the
information of the corrupted players and the signature of m could generate by itself
all the other public information produced by the protocol Thresh-Sig. This ensures
that the run of the protocol provides no useful information to the adversary other
than the final signature on m.

DerFINITION 3. A threshold signature scheme 7% = (Thresh-Key-Gen, Thresh-
Sig) is simulatable if the following properties hold:

1. The protocol Thresh-Key-Gen is simulatable. That is, there exists a
simulator S/M, that, on input the public key y and the public output generated by
an execution of Thresh-Key-Gen, can simulate the view of the adversary on that
execution.

2. The protocol Thresh-Sig is simulatable. That is, there exists a simulator
SIM, that, on input the public input of Thresh-Sig (in particular the public key y
and the message m), ¢ shares x,, ..., x;, and the signature sig of m, can simulate the

view of the adversary on an execution of Thresh-Sig that generates sig as an
output.
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This is actually a stronger property than Definition 2. Indeed it would be enough
for us to say that the executions of the protocols Thresh-Key-Gen and Thresh-Sig
give the adversary no advantage in forging signatures for the scheme . In other
words, we could allow the adversary to gain knowledge provided that such
knowledge is useless for forging.

However, our stronger definition subsumes this specific goal and provides a proof
of security for any of the “flavors” of signature security as listed in [GMRS88].
Indeed one can prove that if the underlying signature scheme % is unforgeable (in
any of the flavors of [GMR88]) and .7 % is simulatable then .7 % is unforgeable
(with the same flavor as &). Another important aspect of proving the security of
our signature schemes through the stronger Definition 3 is that it allows us to main-
tain security when composing several of these protocols or composing it with other
protocols, such as proactive secret sharing. This forms an essential ingredient in the
proactivization of our protocols in the framework of [ HIJKY97].

Finally, we need the important notion of robustness. Robustness means that the
protocol will compute a correct output even in the presence of halting or malicious
faults. We will talk about (4, ¢, n)-robustness to indicate that the adversary is
allowed to halt up to & players and corrupt maliciously up to ¢ players (h+c¢ <t
where ¢ is total number of corrupted players).

DEerFINITION 4. A threshold signature scheme 7% = (Thresh-Key-Gen, Thresh-
Sig) is (A, ¢, n)-robust if in a group of n players, even in the presence of an adver-
sary who halts / players and corrupts maliciously ¢ players, both Thresh-Key-Gen
and Thresh-Sig complete successfully.

3. THE DIGITAL SIGNATURE STANDARD

The digital signature standard (DSS) [ NIST91] is a signature scheme based on
the ElGamal [ EIG85] and Schnorr [ Sch91 ] signature schemes, which was adopted
as the U.S. standard digital signature algorithm. In our description of the DSS
protocol we follow the notation introduced in [Lan95], which differs from the
original presentation of [ NIST91] by switching k and k ~!. This change will allow
a clearer presentation of our threshold DSS signature protocols.

Key generation. A DSS key is composed of public information p, ¢, g, a public
key y, and a secret key x, where:
1. pisa prime number of length /, where / is a multiple of 64 and 512 < /< 1024.
2. ¢ is a 160-bit prime divisor of p — 1.
3. gis an element of order ¢ in Z,*. The triple (p, ¢, g) is public.
4. x is the secret key of the signer, a random number 1 <x <gq.
5

y=g*mod p is the public verification key.
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SIGNATURE ALGORITHM. Let M be the message to be signed. The message is first
hashed using the hash function SHA-1; let m be the resulting hash value. The signer
picks a random number k such that 1 <k < g calculates k~! mod ¢ and sets

r=(g* 'mod p)mod ¢

s =k(m+ xr) mod q.

The pair (r, s) is a signature of m.

VERIFICATION ALGORITHM. A signature (r, s) of a message M can be publicly
verified by first computing the SHA-1 hash m of M and then by checking that

r=( g"”_lym_1 mod p) mod ¢ where s~! is computed modulo ¢.

Important notational convention. In the following when we refer to the
“message” m it is to be intended as the SHA-1 hash of the original message M. It
is indeed known that without this hashing step DSS would be existentially
forgeable.

DSS assumption. The DSS signature scheme is unforgeable according to
Definition 1.

Remark. Later in the simulation of our protocols we will need the value r* =
¢*"'mod p that is the value r before the reduction mod g. We note that such a
value is easily computable from a regular DSS signature pair since

r* = g™ 'y ' mod p.
This basically implies that the purpose of the extra reduction mod ¢ is to shorten
the DSS signature, but it serves no security purpose.

4. BASIC TOOLS

Here we recall a few existing techniques that we use in our solutions.

4.1. Shamir’s Secret Sharing

In Shamir’s secret sharing protocol [Sha79] (we will refer to it as Shamir-SS),
a dealer shares a secret among n players Py, ..., P, in the following way. Given a
number 7 <n, a prime ¢, and a secret g € Z,, the dealer chooses at random a poly-
nomial f(z) over Z, of degree ¢ such that f(0) = o. It then secretly transmits to each
player P, a share a; 2 f(i). (We use the interpolation values i=1, 2, ..., n for sim-
plicity; any values in Z, can be used as well.) This protocol generates no public out-
put. It can tolerate ¢ eavesdropping faults if n > ¢+ 1. It can also tolerate ¢ halting
faults if n>2¢+ 1. In the following we will write

(G5 0,) <25 6 mod ¢

to denote such a sharing.
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We note that by using error-correcting techniques the protocol can be modified
to tolerate ¢ malicious faults (among the players, excluding the dealer) if n>3¢+1
[MS81] (i.e., the secret can still be reconstructed in the presence of ¢<n/3
corrupted shares).

4.2. Feldman’s Verifiable Secret Sharing

Feldman’s verifiable secret protocol [ Fel87], denoted here by Exp-VSS, extends
Shamir’s secret sharing method in a way that allows the recipients of shares to
verify that their shares are consistent (i.e., that any subset of # + 1 shares determines
the same unique secret). The protocol can tolerate up to 5+ malicious faults includ-
ing the dealer. For this purpose, two large primes p and ¢ and an element ge Zf
are chosen such that ¢ divides p—1 and g is an element of Z} of order ¢.° Like
a Shamir’s scheme, the dealer generates a random ¢-degree polynomial f(z) over
Z,, st. f(0)=o0, and transmits to each player P; a share o;= f(i). The dealer also
broadcasts values y,= g% mod p, where f(z) =3 ;a;z’. This will allow the players to
check that the values o, really define a secret by checking that

g =1 (y,)” mod p. (1)
J

If the above equation is not satisfied player P, asks the dealer to reveal his share
(we call this a complaint). If more than ¢ players complain then the dealer is clearly
bad and he is disqualified. Otherwise the dealer reveals the share ¢; matching
Eq. (1) for each complaining player P,;.

Equation (1) also allows detection of incorrect shares g at reconstruction time.
Notice that the value of the secret is only computationally secure, e.g., the value
g% = g?mod p is leaked. However, it can be shown that an adversary that learns
t or less shares cannot obtain any information on ¢ beyond what can be derived
from g° The proof of this fact uses a simulation argument which we sketch here.
Given any ¢ (or less) shares (known to the adversary) and g°, one can generate a
distribution of the other public information in the protocol as follows. Assume the
known shares are o, ..., o,. Thus we know g7, i=1, ..., ¢, as well as g? = g°. This
allows us to compute g for i > ¢ using the equation g% =TT;_, (¢%)* where 1, are
the Lagrange interpolation coefficients (ie., such that for i>¢ o,=3%7_;2;0,). In
the following, we refer to the above way of computing g as interpolation in the
exponent.

4.3. Unconditionally Secure Verifiable Secret Sharing

Here we recall a verifiable secret sharing protocol that provides information
theoretic secrecy for the shared secret. This is in contrast to Feldman’s VSS
protocol which leaks the value of g°mod p. The stronger secrecy property is

®1In the applications in this paper we will typically use the values p, ¢, g as defined by the DSS scheme
(Section 3).
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required by some of our applications and security analysis. Two known implemen-
tations, with slightly different properties, of such a VSS protocol are known in the
literature. One, by Feldman and Micali [ FM88], is based on a bivariate polyno-
mial sharing and can tolerate up to “3' malicious faults. The other, by Pedersen
[Ped91b], withstands up to “5! faults and we use it in our applications. We
describe this protocol next and will refer to it as Uncond-Secure-VSS.

Pedersen’s VSS uses the parameters p, ¢, g as defined for Feldman’s VSS. In addi-
tion, it uses an element s e Z;* such that / belongs to the subgroup generated by
g and the discrete log of / in base g is unknown (and assumed hard to compute).
The dealer first chooses two 7-degree polynomials f(z) =3, a,z/ and f'(z) =3, b;z’
with random coefficients subject to f(0) = ¢ and sends to each player P, the values
o,= f(i) and 7;= f'(i) mod ¢. The dealer then commits to each coefficient of the
polynomials /" and f’ by publishing the values 4,= g%h” mod p. This allows the
players to verify the received shares by checking that

g“h" =[] (4,” mod p. (2)

J

As in Feldman’s VSS the players who hold shares that do not satisfy the above
equation broadcast a complaint. If more than ¢ players complain the dealer is dis-
qualified. Otherwise the dealer broadcasts the values o; and 7, matching the above
equation for each complaining player P,.

At reconstruction time the players are required to reveal both o, and 7, and
Eq. (2) is used to validate the shares. Indeed in order to have an incorrect share o’
accepted at reconstruction time, player P, has to compute the discrete log of / in
base g.

Notice that the value of the secret is unconditionally protected since the only
value revealed is 4, = g°h® (it can be seen that for any value ¢’ there is exactly one
value b} such that 4,= g”h* mod p and thus A, gives no information on o). This
scheme is robust against 25! malicious faults (with negligible probability of error)
provided that computing discrete logarithm in Z* is hard. As DSS already embeds
this assumption, this protocol can be used in our protocol without introducing any
new assumptions.

4.4. Joint Random Secret Sharing

In a joint random secret sharing [IS 90, Ped91b, Ped91c] scheme the players
collectively choose shares corresponding to a (¢, n)-secret sharing of a random value.
At the end of such a protocol each player P; has a share og;, where (o4, ..., 0,)
1, 5 and ¢ is uniformly distributed over the interpolation field. As with a
regular (z, n)-secret sharing scheme the value o is kept secret from any coalition of
t players. In general, to realize a joint random secret sharing each player acts as
dealer of a random local secret that he chooses, and then the final share g, of player
P; is computed as the sum of the shares dealt to P; by each player. Consequently,
the joint secret equals the sum of all well-dealt secrets.
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Joint-Shamir-RSS

1. Each P; chooses at random a polynomial f;(z) over Z; of degree t. Let a; = f;(0). P; distributes to
every player P; a share oy 2 fi(5)-
2. Each P; computes its final share as 0; = 35;c4y n) 0ij mod g (where o;; = 0 if P; did not receive

anything from P;). Then (o1,...,0,) 5‘—"2 o mod g, where o is the shared secret.

FIG. 1. Joint Shamir random secret sharing.

The realization of such a protocol depends on the type of attacker that one
assumes. Against a halting adversary it suffices for each player to deal its random
local value using Shamir-SS. The resulting protocol, called Joint-Shamir-RSS,
achieves a sharing of a uniformly distributed secret g, even in the presence of a halt-
ing adversary who can compromise up to ¢ players. In Fig. 1 we present Joint-
Shamir-RSS which is resistant to a halting adversary only if the players crash at
the beginning of each round. Indeed, if a player crashed in the middle of a round
while distributing its shares, the honest players will have an inconsistent view of this
sharing. As we said in footnote 4 in Section 2, if the assumption that players crash
only at the beginning of a round is to be relaxed, this problem can be easily fixed
by adding one round of acknowledgment messages on the broadcast channel
following Step 1 of Fig. 1.

Against a malicious adversary we will use the protocol Joint-Uncond-Secure-
RSS presented in Fig. 2. It differs from Joint-Shamir-RSS in that the local secret
a,, is shared by player P, using the protocol Uncond-Secure-VSS in place of
Shamir-SS. This enables disqualification of dishonest players who deal inconsistent
shares. The protocol achieves an unconditionally secure secret sharing of a
uniformly distributed secret ¢ even in the presence of a malicious adversary who
can compromise up to ¢ players.

In our DSS application (e.g., see Section 5) we are going to need a joint random
secret sharing where the value o is uniformly distributed but also the value

Joint-Uncond-Secure-RSS

1. Player P; generates 2t 4+ 2 random numbers in Zg, a0, a1, . . ., @it and bso, b1, ..., b, Consider the
two polynomials f;(z) = Z;:o a;xz* and fl(z) = Ei:o b;xz* modulo g. Player P; does the following:
(a) sends to player P; the values ¢;; = f;(j) mod ¢ and p;; = f{(j) mod q.
(b) computes the values A;; = g*h%* modp (k=0,...,t). Broadcasts {Aic}reqo..13-

2. Player P, received the values o;; and p;; and checks the following equations (for each j = 1,...,n):
t .
g°7h## = [](Aj%)" modp 3
k=0

If for some j the equation is not satisfied P; broadcasts the value COM PLAIN;.

3. If more than ¢ players broadcast COM PLAINj, then player P; is disqualified. Otherwise, player P;
reveals the values o;; and pj; for all the players P; that broadcasted COM PLAIN;. Equation (3) is
verified by everybody for the broadcasted values. If it is not satisfied, player P; is disqualified.

4. Let Good be the set of players that are not disqualified. Each player P; computes its share (o3, p;):
Oi = YlpieGooa i MOdq , pi = 3p.cgoos Pii Mod ¢ and all players compute the verification
information used for secret reconstruction: Ay = HPjeGood Ajrmodp, k=0,..,1

(The shared secret o is defined as o = 3¢ 5,04 %j0 mod ¢}

FIG. 2. Joint unconditionally secure random secret sharing.
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Joint-Exp-RSS

1. Run Joint-Uncond-Secure-RSS from Figure 2.

2. Let Good be the set of players that are not disqualified. If P; € Good then P; broadcasts values
Yik = g°* modp for k=0,...,¢t.

3. Player P; checks the following equation (for each j, such that P; € Good):

¢
g% = H(yjk)ih mod p 4)
k=0

If the check fails for an index j, P; complains against P; by broadcasting the values o;;, p;; that
satisfy Eq. 3 but do not satisfy Eq. 4.

4. For players P; who receive at least one valid complaint, i.e. values which satisfy Equation (3) and
not Equation (4), the other players run the reconstruction phase of Uncond-Secure-VSS to compute
polynomial f;(z) = Z;:o a;x2" and values y;x = g** mod p, k=0, ...,tin the clear.

5. All players compute the verification information used for secret reconstruction:
% = [1p,eGood Yix mod p, for k € {0,...,2}.

The shared secret o is implicitly defined as o = ). a;o mod q. Note that yo = ¢° modpis a
FE€EGood *I
public output of this protocol.)

FIG. 3. Joint computationally secure random secret sharing.

g’ mod p is public. It would seem that the simplest way to do this is to run a joint
version of Feldman’s VSS, namely, each player shares a random value «a; via
Exp-VSS and then the secret is taken to be the sum of the properly dealt values.
However, in the partially synchronous communication model (as we consider here),
this is insecure since Exp-VSS reveals g“ mod p, and hence the adversary might
wait till he sees the g“ values corresponding to the random values of the good
players and base the values he will share on that information. Thus the sum of the
shared values might not be random. For example, it is easy to show that the adver-
sary can control the last bit of the resultant secret.” In the preliminary version
[ GIKR96a] of this paper we relied on this insecure straightforward implementa-
tion of this subprotocol. Here we correct it with the joint Feldman-like RSS
protocol Joint-Exp-RSS introduced in [GJKR99] (there is a called DKG to
highlight its role as distributed key generation) and shown in Fig. 3. It is proven in
[ GJIKR99] that even in the presence of a malicious adversary who corrupts up to
(n—1)/2 servers, an execution of Joint-Exp-RSS gives the honest players shares o,
of a uniformly distributed secret ¢. Furthermore, value g” is public, and the
adversary does not learn anything more about ¢ than is revealed by g°.

For full details, motivation, and proofs of the Joint-Exp-RSS protocol the
reader should consult [ GIKR99]. Here we describe the protocol and some of its
main properties as needed later in the description and analysis of our threshold
DSS solutions. Joint-Exp-RSS (shown in Fig. 3) works as follows. The players first
perform Joint-Uncond-Secure-RSS (Fig. 2). This ensures that the value o is
uniformly distributed since the contribution of the bad players (including their deci-
sion of being disqualified or not) is independent from the values of the good
players. Afterward each player performs a Feldman “add on” to the previous

"In fact, [ GIKR99] shows that this sample protocol and its various variants are insecure even in the
much stronger fully synchronous communication model (i.e., a nonrushing adversary model).
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unconditionally secure VSS (using the same sharing polynomial) just for the
purpose of collectively computing g°. If a bad player fails this step then his
contribution is publicly reconstructed from the information dealt during the Joint-
Uncond-Secure-RSS part of the protocol and thus the corresponding value can be
incorporated in the final share calculation.

We stress the central role of information-theoretic commitments (as used in
Joint-Uncond-Secure-RSS) to achieve security against a rushing adversary; due
to the strong secrecy guarantee of these commitments the attacker has no way to
make his own decisions based on the committed data. See [ GJKR99] for a full
proof of security of Joint-Exp-RSS against such attackers.

Here we stress two main properties of the protocol that will be useful when
proving our full threshold DSS scheme.

1. Joint-Exp-RSS produces an output ¢ which is random and uniformly dis-
tributed in Z,. Consequently y = g” will be random and uniformly distributed in
the subgroup generated by g. Informally, this is the case because the value o is
determined in Joint-Uncond-Secure-RSS performed by the players in Step 1
(Fig. 3), when the set Good is fixed. Since at this point each player’s contribution
to o has been shared with unconditional (information-theoretic) secrecy, the adver-
sary’s contribution cannot be “related” to the contribution of the honest players.
Therefore ¢ is uniformly distributed in Z,,.

The reason that o is fixed at the end of Step | is that once a player is inside the
set Good, its contribution is entered in the computation of ¢ even if the player starts
misbehaving in the rest of the protocol. This can be done since the misbehaving
player’s contribution can be recovered via reconstruction of the Uncond-Secure-
VSS (Step 4).

2. It is possible to simulate the view of the adversary of an execution of
Joint-Exp-RSS that results in a specific public value y,. In other words, there
exists a simulator Sim-Exp-RSS that, on any input y, is able to simulate an
execution of Joint-Exp-RSS that looks indistinguishable to the adversary from an
execution of a real Joint-Exp-RSS that outputs y as its public output y,. The
simulator is shown in Fig. 4 and it is taken from [ GJKR99]. We assume w.l.o.g.
that the adversary corrupted the first ¢ players P,, ..., P,. The simulator works by
running the correct protocol for all the honest players except one (say P,). For this
player the simulator produces a simulated execution of the Feldman add-on. That

Sim-Exp-RSS
Input: A value y € 7

1. Run Joint-Uncond-Secure-RSS from Figure 2 on behalf of the honest players. Let fi(2) = 306 _, dixz*,
i = 1,...,n, be the secret-sharing polynomial dealt by P;. Denote by &; the final share of player P;.
Notice that all these values are known to the simulator.

2. Compute Jix = g** modpfori=1,...,.n~1and k=0,...,¢t.
For player P, do the following: Set §n0 = ¥ - [[1(3ic) 'modp. Compute fink =
yrho H::l (¢%™)*** mod p for k = 1, ..., ¢, where g ;’s are known coefficients.
For each player P;, t=%t+1,...,n broadcast §ix for k =0,...,t.

3. Follow the instructions of the protocol for the honest players.

4. Follow the instructions of the protocol for the honest players. Notice that the simulator can answer
complaints produced by the adversary.

5. Follow the instructions of the protocol for the honest players.

FIG. 4. Simulator for Joint-Exp-RSS.
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is, from the ¢ shares held by the adversary and the value y that the simulator is
required to hit, it computes all the reaming public information by interpolation in
the exponent.

Intuitively, this is a good simulation because in the real protocol .o/ receives ¢
shares a4, ..., g, of a proper sharing. It also receives the public information y,, ..., y,.
Clearly the values o4, .., 0, and &4, ..., §, are identically distributed. The public
information is also random and uniformly distributed except that y,= y, which is
required by the simulation.

4.5. Joint Zero Secret Sharing

This protocol generates a collective sharing of a secret whose value is zero. Such
a protocol is similar to the above joint random secret sharing protocols but instead
of local random secrets each player deals a sharing of the value zero.

Specifically, if no verifiability is required, we will use a protocol Joint-Shamir-
ZSS, which is a version of Joint-Shamir-RSS from Fig. 1, except that in Step (1),
each player picks a random ¢-degree polynomial f;(z) over Z, subject to a constraint
that f;(0)[ =a,]=0.

When verifiability is required we use a protocol denoted Joint-Uncond-Secure-
ZSS, which follows Joint-Uncond-Secure-RSS (see Fig.2) with the following
modifications:

Step 1. Each P, picks only 2t random variables, because a;, and b,, are fixed
as a;o=b,;,=0. Consequently, values 4, are computed only for k=1, .., ¢.

Step 2. Equation (3) is modifies so that the product is computed over k ranging
from 1 to ¢ rather than from 0 to ¢.

Notice that by adding such zero-shares to existing shares of some secret o, one
obtains a randomization of the shares of ¢ without changing the secret. This is the
way we will typically use the Joint-Shamir-ZSS and Joint-Uncond-Secure-ZSS
protocols.

4.6. Computing Reciprocals

In the distributed DSS protocol we are faced with the following problem. Given
a secret kK mod ¢ which is shared among players Py, ..., P,, generate a sharing of the
value k~!'mod g, without revealing information on k and k! The solution
described below is due to Bar-Ilan and Beaver [ BB§9].

Each player P, holds a share k; corresponding to a (z, n) Shamir secret sharing
of k, namely, (k, ..., k,) <“"5 k. The computation of shares for k~' is accom-
plished as follows.

1. The players jointly generate a (z, n) sharing of a random element ae Z,
using a Joint-Shamir-RSS protocol. Denote the resulting shares by «,, a5, ..., a,,,

ie., (aj, .., a,) <=2 q.

2. The players execute a (2¢, n) Joint-Shamir-ZSS protocol after which each
player P; holds a share b; of the secret 0. (The implicit interpolation polynomial is
of degree 2¢).
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3. The players reconstruct the value pu=ka by broadcasting the values
k;a;+ b, and interpolating the corresponding 2¢-degree polynomial.

4. Each player computes his or her share u, of k! by setting u; & u"a;

mod gq.

We refer to the above protocol as the Reciprocal Protocol. In [ BB§9] it is
proven that such a protocol is secure against an eavesdropping (n > 2¢+ 1) or halt-
ing (n>3t+1) adversary; ie., it correctly computes a sharing of k~! mod ¢ and
reveals no extra information (e.g., is simulatable). Intuitively, the value u revealed
in the protocol gives no information on k since y is the product of k with a random
element a.

If robustness against a malicious adversary is required one should replace Joint-
Shamir-RSS with Joint-Uncond-Secure-RSS or Joint-Exp-RSS and Joint-
Shamir-ZSS with Joint-Uncond-Secure-ZSS.

4.7. Multiplication of Two Secrets

Given two secrets u and v, which are both shared among the players, compute
the product uv, while maintaining both of the original values secret (aside from the
obvious information which is revealed from the result).

Given that u and v are each shared by a polynomial of degree ¢, each player can
locally multiply his shares of # and v, and the result will be a share of uv on a poly-
nomial of degree 2¢. Consequently, the value uv can still be reconstructed from a set
of 2¢+ 1 correct shares. An additional rerandomization procedure (using a joint
zero secret sharing protocol) is required to protect the secrecy of the multiplied
secret. This randomization is essential because a polynomial of degree 2¢ which is
a product of two polynomials of degree ¢ is not a random polynomial and would
expose information about u and v.

We note that this solution to the problem of secret multiplication is a simplified
version of the protocols presented in [ BGW88, CCDS88]. (In contrast to those
works, in our case secrets are multiplied only once, thus saving most of the com-
plexity of the solutions in the above works which mainly deal with the problem of
repetitive multiplication.) The idea of avoiding complicated degree-reduction steps
when there is only one multiplication to perform appears also in [ B87].

5. DSS THRESHOLD KEY-GENERATION WITHOUT A TRUSTED PARTY

An instance (p, ¢, g) of DSS can be generated using a public procedure (e.g., as
specified in [NIST91]) or using randomness which is jointly provided by the
players. To generate a pair of public and private keys in a distributed setting
without a trusted party, we use a joint verifiable secret sharing protocol.

In the presence of an eavesdropping or halting adversary, the players run Joint-
Shamir-RSS (Fig. 1) to create a random Shamir secret sharing (x,, ..., x,,) <25 x,
followed by an extra step when each player P; publishes y,= g mod p and the
players publicly interpolate y = g* “in the exponent,” as explained at the end of
Section 4.2. Namely, if G is a group of 7+ 1 players that published their values y;
(note that some players might halt and fail to submit their y,’s), then each player
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computes y = [];cq ¥ where ,’s are the Lagrange interpolation coefficients for the
group of indices G (i.e., numbers such that x=3 ;.5 4,x; mod gq).

In the presence of a malicious adversary it is necessary to run Joint-Exp-RSS
(Fig. 3). The output of both protocols is a Shamir secret sharing (x, ..., x,,) <=2
xmod ¢ of a random value x and a public value y = g* mod p. The pair (y, x) is

taken to be the public—private key pair.

6. DSS-THRESH-SIG-1: EAVESDROPPING AND HALTING ADVERSARY

In this section we present our basic protocol for generating a distributed DSS
signature which enjoys the following properties.

e It is a secure DSS threshold signature scheme in the presence of an
eavesdropping adversary (Section 2) when the number of players is n > 2¢ + 1 where
t is the number of faults.

o It is a secure DSS threshold signature scheme in the presence of a halting
adversary when the number of players is n > 3¢+ 1 where ¢ is the number of faults.

In other words, this protocol preserves security (secrecy and unforgeability) in the
presence of less than half of the eavesdropping faults. On the other hand, this
protocol is robust in the presence of an adversary that in addition to eavesdropping
can halt the operation of up to a third of the players by, for example, crashing
servers or disconnecting them from the communication lines.

Outline. Initially every player P; has a share x; of the secret key x, shared with
a polynomial F(-) of degree ¢, ie., (xi,.. x,) <22 xmod ¢. First the players
generate distributively a random & (with a random #-degree polynomial G(-)) by
running the joint Shamir random secret sharing protocol Joint-Shamir-RSS
(Fig. 1). To compute r= g* ' mod p mod ¢ without revealing k, the players use a
variation of the reciprocal protocol (Section 4.6) where the value g"_1 is recon-
structed rather than the value & ~!. For the generation of the signature’s value s, we
note that s =k(m + xr) mod ¢ corresponds to the constant term of the multiplica-
tion polynomial G(-)(m+rF(-)). Since the players have shares of both G(-) and
m+rF(-), they can compute s by performing the multiplication protocol
(Section 4.7). The full description of protocol DSS-Thresh-Sig-1 is presented in
Fig. 5.

Notation. 1In the description of DSS-Thresh-Sig-1 we use the following nota-
tion for two share interpolation operations:

o v=Interpolate(v,, ..., v,). If {v,,..,v,} (n=2t+1) is a set of values such
that at most ¢ are nul/l and all the remaining ones lie on some ¢-degree polynomial
F(-), then v 2 F(0). The polynomial can be computed by standard polynomial
interpolation.

o f=Exp-Interpolate(w, ..., w,). If {wy, .., w,} (n=2t+1) is a set of values
such that at most ¢ are nu// and the remaining ones are of the form g“ mod p where
the a;’s lie on some 7-degree polynomial G(-), then f 2 g“%. This can be computed
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DSS Signature Generation — Protocol DSS-Thresh-Sig-1

1. Generate k
The players generate a secret random value k, uniformly distributed in Z,, with a polynomial of

degree t, using Joint-Shamir-RSS, which creates shares (ki,...,kn) 5'—"2 k mod gq.

[Secret information of P; : share k; of U

2. Generate random polynomials with constant term 0
Execute two instances of Joint-Shamir-ZSS with polynomials of degree 2¢. Denote the shares created
in these protocols as {b;}ic{1..n} and {ci}ief1..n}-

Secret information of P; : shares b;,¢;

3. Compute » = ¢* mod p mod ¢
(a) The players generate a random value a, uniformly distributed in Z;, with a polynomial of degree

t, using Joint-Shamir-RSS, which creates shares (ay,...,an) 5‘—"2 amod g.

|Secret information of P; : share a; of a I

(b) Player P; broadcasts v; = k;a; + b; mod ¢ and w; = ¢g* mod p. If P; does not participate his

values are set to null. Notice that (v1,...,v,) ((2:_,n)) ka mod gq.

|Public information: {’Ui}«;e{l___n}, {9“‘}56{1..”} '

(c) Player P; locally computes
e i 2 Interpolate(vy, ..., vs) mod g [= ka mod q]
3 2 Exp-Interpolate{ws, ..., w,) mod p [= g% mod p]

1

or? B*"" mod p mod g [= (¢*)*" = ¢* " mod pmod g]

[Public information: =

4. Generate s = k(m + zr) mod ¢

(a) Player P; broadcasts s; = ki(m + @;7) + ¢; mod ¢. If P; does not participate, his value s; is set

to null. Notice that (s1,...,85) @ k(m + zr) mod q.
I Public information: {s;}ie{1..n} l
(b) Each player computes s 2 Interpolate(sy, ..., s,) mod ¢.

I Public information: s

5. Output (r, s) as the signature for m.

FIG. 5. DSS-Thresh-Sig-1—halting (n >3+ 1) or eavesdropping (n>2¢+ 1) adversary.

by the interpolation in the exponent method of Section 4.2, ie., f=[1;c, wi" =
[Tcr (g9, where V' is a (¢ + 1)-subset of the correct w,’s and 4, .’s are the
corresponding Lagrange interpolation coefficients.

The following lemma can be easily proven by inspection of the protocol:

LemMMA 1. DSS-Thresh-Sig-1 is a (t,0,n=23t+1)-robust threshold DSS
signature generation protocol, namely it tolerates up to t eavesdropping and halting
faults if the total number of players is n >3t + 1.

We need to show that the protocol is unforgeable. We do this by showing that
DSS-Thresh-Sig-1 is simulatable. A simulator .%.#.#-1 for the protocol is shown
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SIM-1

Input: public key y, message m, its DSS signature (r, s), shares (21, ..., z;) of the corrupted players.

T

0. Compute r* = g"‘"-ly ' mod p.

1. SIM-1 shares a random value uniformly distributed in Z, for each good player using Shamir-SS.
1t also listens to the sharings done by the adversary. Let k be the resulting value of the associated
Joint-Shamir-RSS thus performed. Notice that f is uniformly distributed in Z, and also is known to
SIM-1 (since he holds the information of more than ¢ players).

2. ST M-1 runs the part of the good players in two instances of Joint-Shamir-ZSS. Set bi, & for 1 <i<n
to the output of these invocations. Notice that all these values are known to STM-1.

3. (a) STM-1 runs the part of the good players in the Joint-Shamir-RSS. Let & be the resulting shared
value and @y,...,&; the values held by the adversary. Note that all those values are known to
SIM-1.

(b) Choose a random value i uniformly distributed in [0..g — 1]. Denote (r*)* by g%.
(We stress that g® is only a notation for (r*)?; the value & is never explicitly computed in the

simulation).
From the values @ = (r*)* and @ = g% (i = 1,...,t), SIM-1 generates w; = g% for
i =t+1,...,n in such a way that all the ;s interpolate to g* “in the exponent”, i.e.,

by = g% = gA"°a+ZL=x Auilde (g%)ee 1‘[;=1(uv,,)%~ for: =t+1,...,n and known values A; 5.

Compute ; 2 4;k; +b; for i = 1,...,t. Choose random shares 9; for i =t +1,...,2t. Values

1, ..., ¥a¢ define a unique polynomial f¥)(z) of degree 2t such that f(®)(0) = 4. Complete the

shares % 2 fO@E) fori=2t+1,...,n.

Broadcast the values 1; and 9; for each player P;, i =t+1,...,n, i.e. for the good players.
(c) All computations in this step follow from the already computed public information.

4. Compute 3; 2 l::,'(m+ z;7)+ & for i = 1,...,t. Choose random shares §; fori =t +1,...,2¢. Values
31, ..., §2; define a unique polynomial f(*)(2) of degree 2¢ such that f)(0) = s. Complete the shares
R NPAY .

8 = f(")(z) fori=2t+1,...,n.
Broadcast the values §; for each player P;, i =t +1,...,n, i.e. for the good players.

FIG. 6. Simulation protocol for DSS-Thresh-Sig-1.

in Fig. 6. It takes as input the public key y & g¥, a message m, its DSS signature
(r, s), and shares (x, ..., x,) of the corrupted parties and runs a simulated execution
of the protocol with an adversary who controls (without the loss of generality) the
first ¢ players, i.e., learns their secret values x,, ..., x, and may cause them to crash
during the protocol. By “without loss of generality” we mean (i) that the adversary
compromises the first ¢ players and (ii) that the simulation is successful if the adver-
sary compromises /ess than ¢ shares. Both these points are easily argued.

LEMMA 2. Fix an eavesdropping or halting adversary <of. Let the number of
players be n=2t+1, where t is the number of faults. Vv IEW,,(DSS-
Thresh-Sig-1(x, ..., x,(m, y))=(r,s)) has the same probability distribution as
S IM-1(m, (1,8), Yy X1y ey X,)-

Proof. We exhibit the proof by comparing the information generated by each
step of the #.#.#-1 protocol in Fig. 6 to the information generated by DSS-
Thresh-Sig-1 in Fig. 5.

1. Both the protocol and the simulator execute a sharing of a random secret
(k and k, respectively). As Shamir’s secret sharing is information theoretically
secure, all subsets of ¢ shares have the same probability. Thus, the sharings of two
(possibly) different secrets generate the same distribution for the sets of size z. As
o/ sees t shares in the protocol and receives ¢ shares from the simulator, this dis-
tribution is identical.
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2. The reasoning is similar to the previous step.

3. (a) Again, by the same argument as in Step 1, the distribution of the view
of the adversary after this step is identical between a real and a simulated run.

(b) The public values vy, ..., v, interpolate to some random uniformly dis-
tributed value in [1..g—1]. The shares ¢, ..., 9, interpolate the value £ which is
random and uniformly distributed in [1..¢q—1]. In addition, the share v,, for
1 <i<t, satisfies that v;=k;a;+b;. But the share 4,, for 1 <i<zt, also has this
property.

The value g was generated by choosing a random value £ uniformly distributed
in [1..g—1] and computing (r*)* which is equal to g& % The value k!4 is
uniformly distributed in [1..¢ — 1]; hence the distribution of g and g? is the same.
The rest of the values g% for ¢+ 1 <i<n are obtained through a deterministic com-
putation from g? and g% for 1 <i<t; hence they too have the same distribution as
gfor 1 <i<t.

4. Same argument as above noting that the shares interpolate the secret s and
that they were properly generated by & .#-1.

This completes the proof of Lemma 2. ||
From the above lemmas we derive the following:

THEOREM 1. Under the DSS assumption, DSS-Thresh-Sig-1 is a secure, ie.,
robust and unforgeable, threshold DSS signature generation protocol in the presence
of t eavesdropping (halting) faults if the total number of players is n=2t+1
(n=3t+1).

7. ROBUST THRESHOLD DSS PROTOCOLS

In this section we present a robust version of protocol DSS-Thresh-Sig-1 which
remains secure even in the presence of a fully malicious adversary. The protocol,
DSS-Thresh-Sig-2, requires only the assumption of the unforgeability of DSS

signatures and can tolerate “7! malicious faults. Using some ideas from [ CMI93]
n—1

the protocol can be modified to resist 23— malicious faults at the expense of added
computational complexity (see Section 8).

Outline. Our aim is to prove the security of our protocol based only on the
unforgeability of DSS signatures. Thus we require that the random value k is jointly
generated by the players using Joint-Uncond-Secure-RSS instead of Joint-
Shamir-RSS. This guarantees that no information is leaked on the values k or k!
in the presence of a malicious adversary.® Then the players compute r as in DSS-
Thresh-Sig-1, with the only difference that the protocol Joint-Shamir-RSS that
generates a random value ¢ and the two protocols Joint-Shamir-ZSS that generate
randomizers {b;, ¢;} are replaced by protocols that handle a malicious adversary,
1e., Joint-Exp-RSS and Joint-Uncond-Secure-ZSS. We use Joint-Exp-RSS
rather than Joint-Uncond-Secure-RSS to generate a because the value g“ mod p
needs to be revealed to enable the public computation of r= gk71=(g")”71. As

8 Note that if we used Joint-Exp-VSS in the first step of the protocol then we would reveal g¥, which
is not available from a regular DSS signature.
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DSS Signature Generation — Protocol DSS-Thresh-Sig-2

1. Generate k
The players generate a secret value k, uniformly distributed in Z,, by running Joint-Uncond-Secure-

RSS with a polynomial of degree ¢. Notice that this generates (kq,...,k») 5”—"2 k mod q.

|Secret information of P; : a share k; of k

2. Generate random polynomials with constant term 0
Execute two instances of Joint-Uncond-Secure-ZSS with polynomials of degree 2¢. Denote the shares
created in these protocols as {b;}ic(1..n} and {ci}ie{1..n}-

ISecret information of P; : shares b;, ¢; J

3. Generate r = _q’"'_l mod p mod ¢

(a) Generate a random value a, uniformly distributed in Z;, with a polynomial of degree ¢, using
Joint-Exp-RSS.

Secret information of P; : a share a; of a
Public information: g*

(b) Player P; broadcasts v; = k;a; + b; mod g. If P; doesn’t broadcast a value set v; to null.

Public information: wvy,...,v, where for at least n — ¢
values j it holds that v; = k;a; 4+ b; mod ¢

(c) Player P; computes locally
o pu 2 EC-Interpolate(vy, . . ., v,) mod ¢ [= ka mod g}
L] #_1
er2 (g“)“_1 mod p mod ¢ [= g% mod p mod q)

mod ¢ [=k"'a~! modg]

Note: Even though the above computations are local, as they are done on public information
we can assume that:

[ Public information: r

4. Generate s = k(m + zr) mod ¢
Player P; broadcasts s; = ki(m + @;r) + ¢; mod .

Public information: sy, ..., s, where for at least n — ¢
values j it holds that s; = k;(m + z;r) + ¢; mod ¢

Set s 2 EC-Interpolate(sy, .. ., 8,).

5. Output the pair (r, ) as the signature for m

FIG. 7. Malicious adversary, n>4t¢+ 1.

before, s is computed from the appropriate shares, and the randomizing polyno-
mials shared by values {b;, ¢;} are used to hide possible partial information. The
full protocol is exhibited in Fig. 7.

Notation. 1In the protocol, we use the following notation:

v=EC-Interpolate(v,, ..., v,,).

If {v,..,0,} (n=4r+1) is a set of values such that at least 3¢ of the values lic on
some 2¢-degree polynomial F(-), then v 2 F(0). The polynomial can be computed
by using the Berlekamp—Welch decoder [ BW].
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Convention of Fig.7. In the protocol description in Fig. 7 we include boxes
labeled “Public information” or “Private information of P,” that provide only the
information that is subsequently used by the honest players in this protocol. Note
that much more data are actually produced as public and private outputs at each
step.

THEOREM 2. Under the DSS assumption, Protocol DSS-Thresh-Sig-2 is a secure
(unforgeable and robust) threshold signature protocol for Dss resistant to t faults
against a static malicious adversary, when the number of player is n =4t + 1.

The proof of Theorem 2 easily follows from the proofs of Lemmas 3 and 4 below.
It is important to note that unforgeability is obtained for n > 27+ 1 (see Lemma 4),
while n>4¢+ 1 is needed only for robustness (see Lemma 3.)

LemMA 3. DSS-Thresh-Sig-2 is a (h, ¢, n)-robust threshold DSS signature
generation protocol, if h+c<t and n=4t+1; that is, DSS-Thresh-Sig-2 can

n—1

tolerate up to "7— malicious faults.

Proof. The correctness of the protocol is due to the error correcting capabilities
of polynomial interpolation. Since we are interpolating a polynomial of degree
deg =2t and we have faults =t possible errors, using the Berlekamp—Welch bound
we get that the number of points needed in order to correctly interpolate in
deg + 2 faults + 1 =41+ 1. Hence, we set n>=41+1. |

As in the previous section, in order to prove the unforgeability of DSS-Thresh-
Sig-2 protocol against a malicious adversary, we present in Fig. 8 a simulator
S I AM-2, which on input the public key y & g*, a message m, and its DSS signature
(r,s), runs a simulated execution of the protocol with an adversary who controls
the first ¢ players.

SIM-2

Input: public key y, message m, its DSS signature (r, s), shares (@1, ..., z:) of the corrupted players.

TS~

0. Compute r* = _qm’_ly ' mod p.

1. Run Joint-Uncond-Secure for the honest players. Let k be the resulting shared value and k; the share
held by player P;. Notice that all these values are known to SZM-2.

2. Run two instances of Joint-Uncond-Secure-ZSS for the honest players.. Set 3,-, é; for 1 < i < n to the
output of these invocations. Notice that all these values are known to ST M-2.

3. (a) Choose a random value 2 uniformly distributed in [0..g — 1]. SZM-2 simulates a run of Joint-
Exp-RSS protocol with g = (r*)# as the public output. That is STM-2 runs Sim-Exp-RSS on
input (r*)#.
Let &; for i = 1,...,t the shares held by the adversary at the end of this simulation. Notice
that these values are known to STM-2.

(b) Compute ; S 4:k; +b; for i=1,...,t. Choose random shares 9; for i =t+1,...,2t. Let f()
be the 2t-degree polynomial defined by f(ﬂ)(O) = f and f('j)(i) =49 fori=1,...,2t. Complete
the shares & 2 FO)(i) for i=2t+1,...,n.

Broadcast 941, ..., In.

(c¢) All computations in this step follow from the already computed public information.

4. Compute §; = IAc;(m +z;r)+ & fori = 1,...,t. Choose random shares 8; fort =¢+1,...,2¢. Let
f) be the 2t-degree polynomial defined by f¥)(0) = s and f(®)(5) = 3; for i = 1,...,2¢. Complete
the shares & 2 f®(i) fori=2t+1,...,n.

Broadcast 8441, ..., 3n.

FIG. 8. Simulation protocol for DSS-Thresh-Sig-2.



ROBUST THRESHOLD DSS SIGNATURES 77

LEMMA 4. Fix a malicious adversary <. Let the number of players be n=2t+ 1,
where t is the number of faults. V" SEW,,(DSS-Thresh-Sig-2(x,, ..., x,, (m, y)) =
(r,8)) has the same probability distribution as I M-2(m, (¥, S), Y, X1, ey X;).

Outline of the proof- The simulator is shown in Fig. 8.

For the first two rounds of the protocol (rounds 1-2) the simulator simply
follows the protocol for the honest players. Since this step does not involve the
secret keys x; (that the simulator does not know) it is clear that the view of the
adversary in these first two rounds will be the same as in the real execution.

At the end of this step the simulator has a sharing of a dummy value k. But in
the third round it must produce the first part of the signature r = g* ~"mod p mod ¢
without knowing k. In order to produce r it cheats as follows. It chooses a random
/i and simulates the execution of Joint-Exp-RSS in order to get g%=(r*)” as the
output. See Section 4.4 for the details of the simulation of Joint-Exp-RSS. This is
the crucial step where the result of [ GJKR99] helps.

Then when it comes to reconstruct ak=pu (in the real protocol) the simulator
cheats by broadcasting shares for the honest players that interpolate to z while still
being consistent with the ones held by the adversary. It is easy to verify that
this will result in the correct r as the first part of the signature in the simulated
execution.

As for s the trick is even simpler. The simulator has to hit s without knowing the
secret keys x; of the honest players. But it knows the shares s; held by the adver-
sary; hence it broadcasts for the honest players random shares that interpolate to
s and are consistent with s, ..., 5,.

Proof. 1. Both the protocol and the simulator execute a sharing of a random
secret (k and k, respectively) with an unconditionally secure VSS. As the sharing is
information theoretically secure all subsets of ¢ shares plus the public information
have the same distribution of the adversary’s shares and of the public information.
Since this is all .o/ sees in the protocol and in the simulation, this step is secure.

Notice that this distribution on subsets of 7 shares is guaranteed even if the
corrupted parties contribute nonrandom shares to the generation of &, as long as
these shares are consistent (i.e., they interpolate to a single polynomial). Incon-
sistent shares are always detected and then discarded.

2. The reasoning is similar to the previous step, with the only difference being
that here the sharing is of a zero value.

3. (a) This is the step where the properties of Joint-Exp-RSS make the
proof go through. In the real execution of this step, Joint-Exp-RSS results in the
value g* being public while in the simulated execution the value g% = (#*)* is chosen
by the simulator.

Thanks to the correctness property of Joint-Exp-RSS (see Section 4.4) the value
g“ is random and uniformly distributed. But the value (r*)* is also random and
uniformly distributed since # was chosen uniformly at random in Z,,.

The remaining part of the view of the adversary in this step can be simulated by
Sim-Exp-RSS as we show in Section 4.4.

a
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(b) The values 04, ..., ¢, are identically distributed to the values v, .., v,
since

o the public values v, ..., v, interpolate to some random uniformly dis-
tributed value in [1..g—1]. The shares ¢, ..., 0, interpolate the value £ which is
also random and uniformly distributed in [1..g—1].

o the share v;, for 1 <i<1, satisfies that v,=k;a;+ b,. The share o;, for
1 <i<t, was generated in this manner (see Step 3b).

o In the real execution let f®, f( be the t-degree polynomials defined
respectively by the shares k;, a,. Moreover let f®), f(*) be the 2t-degree polynomial
defined respectively by the shares b, v,. It holds that f® = f@ft 4 £(®) and
f®(0)=0. In the simulated execution we have the polynomial f@ which is
uniquely defined by the public information revealed in Step 3a and the polynomial
/® defined by the shares 8, Let /® be the r-degree polynomial defined by
O =k, (i=1, ..,t) and fP0) = £D(0)/f@(0) mod ¢. Define the 2¢-degree poly-
nomial f® A& f® _ f@r®  Clearly f® “agrees” with the ¢ points b, held by the
adversary (ie., f®(i)=b,) and f®(0). This means that, as in the real execution, the
polynomial £ can be written as f@f® 4+ f® where @, f®, f® are polynomials
of the appropriate degree which match the points held by the adversary. Notice that
the polynomials /®, 7® may not be the ones resulting from the sharings in Steps
1 and 2 of the simulation. But since those VSS’s are information theoretically
secure, the above polynomials are as likely as any other pair of polynomials, given
the public information and the 7 shares held by the adversary.

Thus the view of the adversary in this step is identically distributed between the
real and the simulated execution.

4. The same argument as above noting that the shares interpolate the secret
s and that they were properly generated by ¥.#.#-2 in Step 4.

This completes the proof of Lemma 4. |

Comparison with the [ CMI193] approach. In [ CMI93] the authors add robust-
ness to the basic protocol by turning all the regular Shamir-SS secret sharing
protocols into robust Exp-VSS ones. Although this allows us to tolerate malicious
faults it also produces an extra information leak: namely, both g* and gkil are
revealed. As we pointed out before, this is not information that can be derived from
a regular DSS signature. To claim security in this case one needs to assume that if
one choose u, v at random, uniformly and independently in Z,, then the following
probability distributions (g“mod p, g'mod p) and (g“mod p, g* ' 'mod p) are
computationally indistinguishable. We were not able to reduce this assumption to
the basic unforgeability of the DSS assumption that we make. Another drawback
of the [ CMI93] approach is that all the joint Feldman VSS protocols are done in
a straightforward way which suffers from the problems described in Section 4.4
Finally, and importantly, we note that our approach using error-correction techni-
ques in the signature reconstruction step results in a significantly more efficient

n—1

protocol (at the expense of tolerating 7! malicious faults instead of 252).
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8. MALICIOUS ADVERSARY, n>3t+1

It is possible to devise a protocol that works in the presence of ¢ maliciously
behaving players, when 7 is greater than 37 4 1. The gain in fault-tolerance, however,
comes at the expense of an increased amount of computation (e.g., modular
exponentiations) required from the players in order to compute a single signature.

The previous protocol used the Feldman and Pederson VSS protocols [ Fel87,
Ped91b] only to ensure that secrets were shared correctly. However, when there
was a need to verify the shares broadcasted by players in order to reconstruct a
value, we relied on error-correcting codes (i.e., in Steps (3c) and (4) of Fig. 7). This
allowed us to reconstruct the values without further modular exponentiations, but
forced us to set the fault-tolerance to “Z. The protocol sketched in this section will
make more extensive use of the properties of Feldman’s VSS protocol for the
authentication of shares.

In a regular execution of Exp-VSS the share s; broadcasted by player P; can be
checked against the publicly known value g* for authenticity. Notice that this easily
generalizes to the reconstruction of the linear combination of secrets. For example,
we know that if (a,,..a,) <% a and (b,,.. b,) <=5 b then (a,+b,, ..,
a,+b+n) <= g+ b, If we want to reconstruct a + b, then player P, broadcasts
a;+ b; which can be checked against g%*% = g%g?, Things, however, get more com-
plicated if we want to reconstruct ab because we cannot sieve out bad shares as
before, since we do not know how to compute g%% from g% and g”.

This is exactly the situation in our previous protocol. The values reconstructed
are the product of other shared values. On top of that, one of those shared values,
k, has been shared with Uncond-Secure-VSS and not Exp-VSS. However, there
is also an advantage: at least one of the values multiplied is random and has been
“recently” shared using a Joint-Exp-VSS protocol.

This observation led to a clever trick employed in [ CMI93]. They show that in
the situation described above it is possible to create “authentication pieces” for the
resulting shares of the product. In their case both secrets are shared using Exp-VSS.
We show that the trick can be adapted to our case in which one of the values is
shared with Uncond-Secure-VSS.

We will now proceed to sketch the method in more detail. Let (a;, ..., a,) <=5 a
be a sharing obtained from a run of Joint-Exp-VSS. Let A(z)=A4,+A4,z+ - +
A,z" be the actual 7-degree polynomial that shares the value a = A4,. Player P, holds
share a;= A(i) mod p and the values g mod p are publicly known.

Now assume that the players together generate the sharing of a random value k
using Joint-Uncond-Secure-RSS. This means in particular that each player P,
runs one instance of Uncond-Secure-VSS using a random #-degree polynomial
KO(z)=KP+K{Pz+ ... + K{?z playing the role of f;(z) in Step 1 of Fig.2. We
also assume that the players together generate a random sharing of zero with a 2¢
degree polynomial using Joint-Uncond-Secure-ZSS. This means that each player
runs an instance of Uncond-Secure-ZSS with a 2¢-degree polynomial BY)(z) =
BYz+ ... + B{)z* playing the role of f;(z) in Step 1 of Fig.2. For all i, every
player P, hold shares K(j) and BY”() of these polynomials. Let K(z) =3, K*(z)
and B(z) =Y, BY(z).
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Consider now the polynomial C(z)= A(z) K(z)+ B(z) which shares the value
C(0) =ak that we want to robustly reconstruct. Our purpose is to make values
;= g9 mod p public, where C(z) = Co+ Cyz+ -+ 4+ Cy,z%. If such y,, ..., y,, were
public in Step (3¢c) of the DSS-Thresh-Sig-2 protocol (Fig. 7) then we could sieve
out the bad shares using Feldman’s procedure instead of relying on error-correcting
codes. Note that

C(z)=A(z) K(z)+ B(z) =) A(z) K?(z) + ) BY(z) =) CY(z)

if one lets C(z)=A4(z) K(z)+ BY(z). Let CYz)=CP+CPz+ --. + CPz*
Since C(z) =Y, C(z), we see that values },, ..., 5, Will be known if each player P,
broadcasts

gV, gV, ., g% mod p

which he can easily compute from values g4 and the coefficients of K?(z) and
BY(z) (assume BY’=0):

e [CHEER k0 g0
g% = [l (g™% |g® mod p. (5)

O0<a <t

The broadcasted values can be checked by the other players using the usual
Feldman’s verification procedure since every player P; holds a value CO(j)=
A(j) KO j) + B(j) of polynomial C?(z): Each player checks that the point on the
polynomial he owns does indeed interpolate in the exponent to the values broad-
casted by P,.

In this way, when the product ka is reconstructed, the ¢ faulty shares can be
immediately sieved out, and the number of players can be reduced to 37+ 1 (since
we still need at least 27+ 1 players to reconstruct a polynomial of degree 2¢).

Protocol DSS-Thresh-Sig-3. The application of the above method to our DSS
signature generation protocol is almost immediate. To create a DSS-Thresh-Sig3
protocol which is secure against a malicious adversary with threshold n> 37+ 1, we
transform protocol DSS-Thresh-Sig-2 (Fig. 7) by replacing the error-correcting
mechanism with the above method in the computation of the products ka (Step 3c)
and kx (Step 4).

The drawback of this version of the robust protocol is that while error-correction
is fast, this method requires several extra modular exponentiations.

9. EFFICIENCY CONSIDERATIONS

In this section we give an analysis of the computational effort required to com-
pute DSS signatures in a distributed way using our protocols. We use as a measure
the number of long modular exponentiations required by a single player during the
execution of the protocol.
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We note that in DSS-Thresh-Sig-1 and DSS-Thresh-Sig-2 all the modular
exponentiations happen during the computation of  (i.e., in Steps 1-3). This is also
a property of a centralized DSS signature algorithm. Since r is independent of the
message being signed, this part of the protocol can be moved off-line, and then the
computation of the actual on-line signature would be a very fast and noninteractive
protocol (i.e., it would consist of only Step 4). This nice off-line—on-line feature of
DSS is, however, not preserved in DSS-Thresh-Sig-3 (since there modular
exponentiations are required to verify the correctness of individual shares s; to com-
pute s). This shows the advantage of our approach based on error-correcting codes
(used in DSS-Thresh-Sig-2) over the [ CMI93] approach to obtain robustness
(used in DSS-Thresh-Sig-3). Beyond being more efficient overall (less modular
exponentiations are performed), it also maintains the on-line efficiency typical of
DSS signatures.

A close analysis of the three protocols presented in the previous sections reveals
that:

1. DSS-Thresh-Sig-1 requires ¢ + 3 long modular exponentiations per server.
(Step 3b): 1 exponentiation.

(Step 3c): t+1 long exponentiations in Exp-Interpolate of £ and 1
exponentiation in computing r

2. DSS-Thresh-Sig-2 requires 8¢+ 6n+1 modular exponentiations per
server if no faults occur.

(Step 1) Joint-Uncond-Secure-RSS with a ¢ degree polynomial: 2(¢z+1)
exponentiations in Step 1b of Fig. 2 plus 2(rz — 1) (long) exponentiations in verifica-
tion of Eq. (3) for each other player.

(Step 2) Joint-Uncond-Secure-ZSS with a 2¢ degree polynomial: 2(2¢+ 1) +
2(n—1) exponentiations, in the similar steps as above.

(Step 3a) Joint-Exp-RSS with ¢-degree polynomial: 2(¢+1)+2(rn—1)
exponentiations as in Joint-Uncond-Secure-RSS, with no additional (long)
exponentiations in verifying Eq. (4).

(Step 3c): 1 exponentiation.

3. DSS-Thresh-Sig-3 requires ¢*+ 10z + 8n long exponentiations per server
if no faults occur. The cost is as above plus: (¢ + 1)% the cost of computing the
values g€, Note that values g4 g% used in Eq. (5) are already known.

2(n—1): the verification of the broadcasted values g€ and the verification of the
final values C(j) for each other player P;.

For example, for values of n <20 and for maximal thresholds of t=| (n—1)/3_] and
t=|(n—1)/4, respectively, DSS-Thresh-Sig-3 is at most about 50 % more costly
than DSS-Thresh-Sig-2.

If a fault occurs in DSS-Thresh-Sig-2 or DSS-Thresh-Sig-3, the corrupted
server can force the other servers to incur the largest computational cost by mis-
behaving in the Joint-Exp-RSS protocol in Step 3a in Fig. 7. Consider the protocol
in Fig. 3: if there are less than ¢ complain’s in Step 6, each server pays up to 2¢ long
exponentiations to verify Egs. (3) and (4) per each submitted pair (o, p;;), and if
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this leads to P;’s exposure, the public reconstruction of values a;., y; takes at most
an additional 2n + ¢ long exponentiations. Therefore, the additional cost is up to
2n + 3t exponentiations per fault. However, note that each fault results in identifica-
tion of the faulty party, which from then on is ignored by the honest players. There-
fore, no more than ¢ faults per lifetime of the distributed DSS signing service can
occur. Consequently, the cost caused by failures is negligible when amortized per
each signature computation.
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