Вероятностные алгоритмы. Вероятностные классы.

3 Апреля 2018

- 1. Докажите, что $P \subseteq RP \subseteq NP$.
- 2. Докажите, что $ZPP = RP \cap co RP$.
- 3. Предположим в алгоритме для задачи о минимальном разрезе вместо выбора ребра мы выбираем произвольную пару вершин и объединяем их в одну вершину. Покажите, что сущетсвуют графы на которых такой алгоритм находит минимальный разрез с экспоненциально малой вероятностью.
- 4. Рассмотрим Монте Карло алгоритм A для задачи Π . Пусть математическое ожидание время работы алгоритма A равно T(n) и вероятность выдать верный ответ $\gamma(n)$. Более того за время t(n) мы можем проверить является ли выданное решение действительно решением для задачи Π . Покажите как получить Лас Вегас алгоритм, который всегда выдает верный алгоритм для задачи Π и матожидание его времени работы не превосходит $\frac{T(n)+t(n)}{\gamma n}$.
- 5. Пусть $0 < \epsilon_2 < \epsilon_1 < 1$. Рассмотрим алгоритм Монте Карло который выдает правильный ответ с вероятностью не меньше $1 \epsilon_1$ независимо от входа. Сколько раз нужно независимо запустить алгоритм, чтобы вероятность верного ответа составила $1 \epsilon_2$?
- 6. Есть *п* студентов живущиее каждый в своей комнате в общежитии(кроме комнат студентов больше нет комнат). После коллоквиума по мат. анализу уставшие и уже ничего не соображающие студенты по одному заходят и засыпают в случайной комнате(в одной комнате может уснуть несколько студентов). Чему равняется мат. ожидание количества студентов уснувших в своей комнате?

- 7. Докажите, $RP \subseteq BPP \subseteq PP$.
- 8. Покажите, что $NP \subseteq PP \subseteq PSPACE$.