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Chapter 5

Linear grammars

5.1 Linear case of ordinary grammars

Linear equations in mathematics: where a variable may only be multiplied by a constant.
Linear language equations: a language variable may only be concatenated by a constant language.

Linear ordinary grammars: with rules A→ uBv or A→ u.

Lemma 5.1 (The linear pumping lemma). For every linear ordinary language L ⊆ Σ∗ there
exists a constant p > 1, such that for every string w ∈ L with |w| > p there exists a partition
w = xuyvz, where |uv| > 0 and |xuvz| 6 p, such that xuiyviz ∈ L for all i > 0.

Example 5.1. The Dyck language is not generated by any linear ordinary grammar.

Proof. Suppose it is. Then, by the linear pumping lemma, there is such a constant p, that the
string w = apbpapbp can be factorized as w = xuyvz, where |uv| > 0 and |xuvz| 6 p. Because of
the latter condition, u must be in the first block ap and v must be in the last block bp. Then the
pumping lemma asserts that the string xyz = ap−|u|bpapbp−|v| is in L, which is not true, since
|u| > 0 or |v| > 0.

Example 5.2. The language { ambmanbn | m,n > 0} is not generated by any linear ordinary
grammar.

Therefore, not closed under concatenation.

Theorem 5.1. The linear languages, as well as the linear unambiguous languages, are closed
under intersection with regular languages.

Proof. By the same construction as before; it preserves linearity of a grammar.

Exercises

5.1.1. Prove that the language { ambm+ncn |m,n > 0} is not generated by any linear ordinary
grammar.

5.2 Linear conjunctive grammars and trellis automata

5.2.1 Linear conjunctive grammars

Definition 5.1. A conjunctive grammar G = (Σ, N,R, S) is said to be linear conjunctive, if
each rule in R is of one of the following forms.

A→ u1B1v1 & . . .&umBmvm (m > 1; ui, vi ∈ Σ∗; Bi ∈ N)

A→ w (w ∈ Σ∗)

2



Linear grammars 3

Example 5.3. The conjunctive grammar for the language { anbncn |n > 0} can be rewritten as
a linear conjunctive grammar as follows.

S → E&F
E → aE | B
B → bBc | ε
F → Fc | D
D → aDb | ε

Definition 5.2. A linear conjunctive grammar G = (Σ, N,R, S) is said to be in the linear normal
form, if each rule in R is of one of the following forms:

A→ bC1 & . . .& bCm &B1c& . . .&Bnc (m+ n > 1; b, c ∈ Σ; Bi, Cj ∈ N),

A→ a (a ∈ Σ),

S → ε (only if S never occurs in the right-hand sides of any rules).

Theorem 5.2. Every linear conjunctive grammar can be transformed to a grammar in the linear
normal form that defines the same language.

5.2.2 Linear Boolean grammars

Definition 5.3. A linear Boolean grammar G = (Σ, N,R, S) is said to be in the linear normal
form, if each rule in R is of one of the following forms:

A→ bC1 & . . .& bCm &B1c& . . .&Bnc&¬bE1 & . . .&¬bEk &¬D1c& . . .&¬D`c

(m,n, k, ` > 0; m+ n > 1),

A→ a (a ∈ Σ),

S → ε,

where the latter rule is allowed only if S never occurs in the right-hand sides of any rules.

Theorem 5.3 (Okhotin [7]). Every linear Boolean grammar can be transformed to a grammar
in the linear normal form that defines the same language.

It shall be proved in the following that linear Boolean grammars define the same family of
languages as linear conjunctive grammars.

5.2.3 Trellis automata

The family of languages defined by linear conjunctive grammars and linear Boolean grammars
is exactly the same as the family recognized by one of the simplest types of cellular automata:
the one-way real-time cellular automata, also known under the proper name of trellis automata,
studied by Dyer [5], Čulík, Gruska and Salomaa [3, 4], Ibarra and Kim [6], and others.

A trellis automaton, defined as a quintuple (Σ, Q, I, δ, F ), processes an input string of length
n > 1 using a uniform triangular array of n(n+1)

2 processor nodes, connected as in Figure 5.1.
Each node computes a value from a fixed finite set Q. The nodes in the bottom row obtain
their values directly from the input symbols using a function I : Σ → Q. The rest of the nodes
compute the function δ : Q×Q→ Q of the values in their predecessors. The string is accepted
if and only if the value computed by the topmost node belongs to the set of accepting states
F ⊆ Q.

Formally, the initial function I is extended to map a string of symbols to a string of states,
as I : Σ+ → Q+ with I(a1 . . . an) = I(a1) . . . I(an), while the function δ is extended to define
the outcome of a computation beginning with a string of states, as δ : Q+ → Q with δ(pαq) =
δ(δ(pα), δ(αq)) for all p, q ∈ Q and α ∈ Q∗. Then the language recognized by the automaton is
defined as L(M) = {w ∈ Σ+ | δ(I(w)) ∈ F}.
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Figure 5.1: The form of a computation of a trellis automaton.

5.2.4 Computational equvalence of the models

Theorem 5.4 (Okhotin [8]). Let Σ be any alphabet. For every language L ⊆ Σ+, the following
three statements are equivalent:

(C). L is defined by a linear conjunctive grammar;

(B). L is defined by a linear Boolean grammar;

(T). L is recognized by a trellis automaton.

The implication ((C) ⇒ (B)) is obvious, and it is sufficient to prove that (B) implies (T),
and (T) implies (C). Each implication is proved by an effective construction.

Lemma 5.2. Let G = (Σ, N,R, S) be a linear Boolean grammar in the linear normal form that
does not generate the empty string, in which the rules of the form

A→ bC1 & . . .& bCm &B1c& . . .&Bnc&¬bE1 & . . .&¬bEk &¬D1c& . . .&¬D`c (5.1a)
A→ a (5.1b)

Construct a trellis automaton M = (Σ, Q, I, δ, F ), where Q = Σ× 2N × Σ and

I(a) = (a, {A |A→ a ∈ R}, a), (5.2a)
δ
(
(b,X, b′), (c′, Y, c)

)
= (b, Z, c), (5.2b)

where Z is the set of all such nonterminals A ∈ N , for which there exists a rule (5.1a), with
B1, . . . , Bn ∈ X, C1, . . . , Cm ∈ Y , D1, . . . , D` /∈ X and E1, . . . , Ek /∈ Y ;

F = { (a,X, b) |X ⊆ N, S ∈ X, a, b ∈ Σ}. (5.2c)

Then, for every string w ∈ Σ+, where b is its first symbol and c is its last symbol, the automaton
computes the state δ(I(w)) = (b, {A ∈ N | w ∈ LG(A)}, c), and accordingly, L(M) = L(G).

Proof. Induction on the length of w.
***TBW***

Lemma 5.3. Let M = (Σ, Q, I, δ, F ) be a trellis automaton. Construct a linear conjunctive
grammar G = (Σ, {Aq | q ∈ Q} ∪ {S}, R, S), where R contains the following rules:

S → Aq (for all q ∈ F ) (5.3a)
AI(a) → a (for all a ∈ Σ) (5.3b)

Aδ(q1,q2) → Aq1c&bAq2 (for all q1, q2 ∈ Q and b, c ∈ Σ) (5.3c)

Then, LG(Aq) = {w ∈ Σ+ | δ(I(w)) = q} for every state q ∈ Q, and accordingly, G is unambigu-
ous and L(G) = L(M).
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5.3 Examples

Example 5.4 (Dyer [5, Thm. 3], Čulík et al. [3]). The Dyck language over Σ = {a, b} is recognized
by the trellis automaton M = (Σ, Q, I, δ, F ) with the set of states Q = {↗,↖, X,−}, with the
initial function given by I(a) =↗ and I(b) =↖, and with the transition function defined in the
following table:

δ ↗ ↖ X −
↗ ↗ X ↗ ↗
↖ − ↖ −
X ↖ ↗
− − ↖ ↖ −

No other pairs of states will ever be reached, so the rest of the transitions may be set arbitrarily.
The set of accepting states is F = {X}.

Figure 5.2: A sample computation of the trellis automaton for the Dyck language given in
Example 5.4.

The transformation in Lemma 5.3, applied to this automaton, produces a linear conjunctive
grammar with more than |Q|2 · |Σ|2 = 64 rules.

Once the unused rules are removed, the grammar takes the following form.

S′ → S | ε
S → Ab&aB
A→ Sa&aX | Sb&aX | Ab&aS | Aa&aA | Ab&aA | Aa&aX | Ab&aX | a
B → Sb&aB | Bb&aB | Bb&bB | Xb&aB | Xb&bB | Xb&aS | Xb&bS | b
X → Ba&aA | Ba&bA | Bb&aA | Bb&bA | Ba&aX | Ba&bX |
| Bb&aX | Bb&bX | Xa&aA | Xa&bA | Xb&aA | Xb&bA |
| Xa&aX | Xa&bX | Xb&aX | Xb&bX

The next example illustrates the ability of trellis automata to count in positional notation.

Example 5.5 (Ibarra, Kim [6, Ex. 2.1]). The language { anb2n | n > 1} is linear conjunctive.

Before constructing the automaton for Example 5.5, consider another example.

Example 5.6. The language { anbi·2n | i, n > 1} is recognized by the trellis automaton
({a, b}, Q, I, δ, F ), where Q = {0, 0+, 1, B,D}, I(a) = 0, I(b) = B, the transition table is given
in Figure 5.3 (with all undefined transitions leading to D), and the set of accepting states is
F = {0+}.
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Figure 5.3: Trellis automaton for the language { anbi·2n | i, n > 1} and its computation.

On a string aibj with i, j > 1, a trellis automaton recognizing this language computes the
i-th bit of the base-2 representation of j. Some further states are used to represent the carry
digit, and to keep track of whether j is less than, equal to, or greater than 2i.

The above automaton can be modified to recognize the language { anb2n | n > 1} as follows:
An actual trellis automaton can be obtained using the set of states {0, 1, 0+}×{t, f}, so that

the state computed on a string aibj with i, j > 1 has the first component represent the i-th bit of
the base-2 representation of j, while its second component determines whether j is less or equal
than

Example 5.7. Let M = ({a, b}, Q, I, δ, F ) be the trellis automaton from the previous example
and consider the trellis automaton M ′ = ({a, b}, Q′, I ′, δ′, F ), in which: Q′ = ({0, 0+, 1} ×
{true, false}) ∪ {B,D}, I(a) = (0, true), I(b) = B, δ′(B,B) = B; δ′((0, x), B) = (1, x),
δ′((1, x), B) = (0+, x), δ′((0+, x), B) = (1, false) for all x ∈ {true, false}; δ′((q, x), (q′, x′)) =
(δ(q, q′), x∧ (q 6= 0+)) for all q, q′ ∈ {0, 0+, 1} and x, x′ ∈ {true, false}, all undefined transitions
go to D, and F = {(0+, true)}. Then L(M ′) = { anb2n | n > 1}.

The first components of all states represent the state of M . The second component is used
to remember whether none of the left predecessors of this state were 0+. An accepting state is
0+ with no occurrences of 0+ among its left predecessors.

The language in the following example had once been proposed as a candidate language for
having no trellis automaton [6]. Surprisingly, a sophisticated trellis automaton recognizing this
language was constructed.

Example 5.8 (Čulík [2]). The language { ambm+nan |m,n > 1} is linear conjunctive.

The construction embeds a cellular automaton solving the firing squad synchronization prob-
lem (requires a minimum-time solution, as discovered by Goto and later improved by Waksman
and by Balzer) into a trellis automaton.

5.4 Limitations of linear grammars

5.4.1 Terrier’s lemma

The method of Terrier is based upon a special complexity function of a language, which
reflects the amount of variation in the membership status of strings obtained by cutting a small
number of symbols from the beginning and from the end of a single string. This complexity
function is defined for any language as follows.



Linear grammars 7

Figure 5.4: The last k rows of a computation of a trellis automaton, and a substring without
first i symbols and last j symbols.

Definition 5.4. Let L ⊆ Σ∗ be a language, let k > 1 and let w = a1 . . . an be a string with
n > k. Consider the set

SL,k,w = { (i, j) | i, j > 0, i+ j < k, ai+1 . . . an−j ∈ L},

which represents the membership in L of all substrings of w longer than |w| − k symbols, where
each pair of coordinates (i, j) refers to w without its first i symbols and its last j symbols. For
each L and k, consider all possible sets of this form obtained for different strings w ∈ Σ>k. The
number of such sets is denoted by

fL(k) =
∣∣{SL,k,w | w ∈ Σ∗, |w| > k}

∣∣
where fL : N→ N is an integer function.

Each set SL,k,w has between 0 and k(k+1)
2 elements, and accordingly, the value of the function

fL(k) is between 1 and 2
k(k+1)

2 . Note that this cardinality f(k) equals 1 if L contains either all
strings of length k or more, or none of these strings.

Assume that a language L is recognized by a trellis automaton, and consider the last k steps of
the automaton’s computation on any input string, illustrated in Figure 5.4. Then, the automaton
is required to discrimitate between f(k) different cases in the last k steps, and must do so on the
basis of the information given in the states q1, . . . , qk. Since the automaton has finitely many
states, it may distinguish between at most 2O(k) different situations. This reasoning yields the
following upper bound on the growth rate of this function for linear conjunctive languages.

Lemma 5.4 (Terrier [9]). If L ∈ Σ∗ is linear conjunctive, then its complexity measure fL(k) is
bounded by an exponential function, that is, there exists such a number p > 1, that

fL(k) 6 pk, for all k > 1.

Example of a language that maximizes this complexity measure, and therefore is recognized
by no trellis automaton.

Example 5.9 (Terrier [9]). The following language L has fL(k) = 2
k(k+1)

2 and therefore is not
linear conjunctive.

L = { ai1bj1 . . . ai`bj`ai`+1bj`+1 . . . aimbjm |m > 2; it, jt > 1, ∃` : i1 = j` and i`+1 = jm}

This language is representable as a concatenation of a linear ordinary language

L0 = { anwbn | n > 1; w ∈ b{a, b}∗a or w = ε}

with itself, as L = L0 · L0.
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Proof. To see that fL(k) = 2
k(k+1)

2 for all k > 1, it has to be shown that every set S ⊆ { (i, j)|i, j >
0, i+ j < k} equals SL,k,wS

for some string wS ∈ Σ>k. Such a string wS is constructed as

wS = ak
( ∏
(i,j)∈S

bk−iak−j
)
bk,

where the concatenation
∏

(i,j) can be taken in any order. Then ak−s
(∏

(i,j)∈S b
k−iak−j

)
bk−t ∈ L

if and only if (s, t) ∈ S, that is, SL,k,wS
= S, which proves that fL(k) = 2

k(k+1)
2 .

5.4.2 The case of a one-symbol alphabet

For a one-symbol alphabet, a trellis automaton degrades to a DFA and hence recognizes a
regular language.

5.4.3 Periodic behaviour in sequences of states

Theorem 5.5 (Buchholz, Kutrib [1]). Let f : N → N be a function, such that the language
Lf = { anbf(n) | n > 1} is linear conjunctive. Then there exists such a constant p > 1, that
f(n) 6 pn+1.

Proof. TBW.

Example 5.10. Languages such as { anb22
n

| n > 1}, { anbn! | n > 1}, etc., are not linear
conjunctive.
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