Функциональное программирование Лекция 3. Просто типизированное лямбда-исчисление

Денис Николаевич Москвин

Кафедра математических и информационных технологий Санкт-Петербургского академического университета

24.02.2012

План лекции

- 1 Понятие типа
- 2 Просто типизированное λ-исчисление
- \odot Формализм систем $\lambda_{
 ightarrow}$
- f 4 Свойства $\lambda_{
 ightarrow}$

План лекции

- 1 Понятие типа
- 2 Просто типизированное λ-исчисление
- \odot Формализм систем λ_{\rightarrow}
- $oldsymbol{4}$ Свойства $\lambda_{\!
 ightarrow}$

Что такое типы?

Система типов — это гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Бенджамин Пирс

- В λ-исчислении:
 - выражения λ-термы;
 - вычисление их редукция;
 - значения (WH)NF.
- Типы *синтаксические* конструкции, приписываемые термам по определённым правилам:

M:σ

Для чего нужны типы?

• Типы дают частичную спецификацию

$$f: \mathbb{N} \to \mathbb{N}$$
 $g: (\forall n: \mathbb{N}. \exists m: \mathbb{N}. m > n)$

 Правильно типизированные программы не могут «сломаться». Робин Милнер (1978)

$$M:\sigma \wedge M \twoheadrightarrow v \Rightarrow v:\sigma$$

- Типизированные программы всегда завершаются.
 (это не всегда так :)
- Проверка типов отлавливает простые ошибки.

Какие бывают системы типов?

Возможны классификации систем типам по разным аспектам:

- Статические (static) vs динамические (dinamic);
- Явные (explicit) vs неявные (implicit);
- Сильные (strong) vs слабые (weak).

Пример слабой системы:

```
x = 5;
y = "37";
z = x + y;
```

- При императивном подходе типы «естественно» возникают из интерпретации различных состояний.
- При функциональном подходе типы «естественно» возникают из анализа арностей функций.

Стрелочный тип в функциональных языках

• В большинстве систем типизации тождественной функции $I \equiv \lambda \, x. \, x$ может быть приписан тип $\alpha \! \to \! \alpha$

$$\mathbf{I}: \alpha \rightarrow \alpha$$

- Если x, являющийся аргументом функции I, имеет тип α , то значение I x тоже имеет тип α .
- В общем случае $\alpha \to \beta$ является типом функции из α в β .

Пример (на некотором условном языке)

 $sin:Double \rightarrow Double$

 $\texttt{length}: \texttt{Array} \! \to \! \texttt{Int}$

Системы Карри и Чёрча

При типизации λ -исчислении выделяют два семейства систем типов.

Системы в стиле Карри

Термы те же, что и в бестиповой теории. Каждый терм обладает множеством различных типов (пустое, одно- или многоэлементное, бесконечное).

Системы в стиле Чёрча

Термы — аннотированные версии бестиповых термов. Каждый терм имеет тип (обычно уникальный), выводимый из способа, которым терм аннотирован.

Два взгляда на системы типов

Подход программиста

Термы интерпретируются как программы, а типы — как их частичные спецификации.

- Системы в стиле Карри: неявная типизация (например, Haskell, Ocaml).
- Системы в стиле Чёрча: явная типизация (большинство типизированных языков).

Логический подход

Типы интерпретируются как высказывания, а термы — как их доказательства.

Связь между «вычислительными» и логическими системами называют *соответствием Карри-Говарда*.

План лекции

- Понятие типа
- 2 Просто типизированное λ-исчисление
- lacksquare Формализм систем $\lambda_{
 ightarrow}$
- $oldsymbol{4}$ Свойства $\lambda_{
 ightarrow}$

Просто типизированное λ-исчисление

Самая простая система — это *просто типизированное* λ -*исчисление* (λ $_{\rightarrow}$ или Simple Type Theory (STT)).

Определение

Множество типов $\mathbb T$ системы $\lambda_{
ightarrow}$ определяется индуктивно:

$$lpha,eta,\ldots\in\mathbb{T}$$
 (переменные типа)
$$\sigma, au\in\mathbb{T}\Rightarrow(\sigma\! o\! au)\in\mathbb{T}$$
 (типы пространства функций)

• В абстрактном синтаксисе:

$$\mathbb{T} ::= \mathbb{V} \mid \mathbb{T} \rightarrow \mathbb{T}$$

Здесь $\mathbb{V} = \{\alpha, \beta, \ldots\}$ — множество типовых переменных.

• Соглашение: α, β, γ используем для типовых переменных, а σ, τ, ρ — для произвольных типов.

Соглашения и примеры

Стрелка правоассоциативна: если $\sigma_1,\dots,\sigma_n\in\mathbb{T}$, то

$$\sigma_1 \mathop{\rightarrow} \sigma_2 \mathop{\rightarrow} \ldots \mathop{\rightarrow} \sigma_n \ \equiv \ (\sigma_1 \mathop{\rightarrow} (\sigma_2 \mathop{\rightarrow} \ldots \mathop{\rightarrow} (\sigma_{n-1} \mathop{\rightarrow} \sigma_n) \ldots))$$

Примеры типов

$$(\alpha \rightarrow \beta) \equiv \alpha \rightarrow \beta$$

$$(\alpha \rightarrow (\beta \rightarrow \gamma)) \equiv \alpha \rightarrow \beta \rightarrow \gamma$$

$$((\alpha \rightarrow \beta) \rightarrow \gamma) \equiv (\alpha \rightarrow \beta) \rightarrow \gamma$$

$$((\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))) \equiv (\alpha \rightarrow \beta) \rightarrow (\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \gamma$$

$$((\alpha \rightarrow \beta) \rightarrow (((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow \beta)) \equiv (\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow \beta$$

Всякий тип в $\lambda_{
ightarrow}$ может быть записан в виде

$$\sigma_1 \mathop{\rightarrow} \sigma_2 \mathop{\rightarrow} \ldots \mathop{\rightarrow} \sigma_n \mathop{\rightarrow} \alpha$$

Как типизировать термы? (переменные и аппликация)

- Если терм *переменная* как угодно:
 - $x:\alpha$, $y:\alpha \to \beta$, $z:(\alpha \to \beta) \to ((\alpha \to \beta) \to \beta) \to \beta$.
- Если терм *аппликация* М N, то
 - M должно быть функцией, то есть иметь стрелочный тип $M\!:\!\sigma\!\to\!\tau;$
 - N должно быть «подходящим» аргументом, то есть иметь тип N: σ ;
 - вся аппликация должна иметь тип результата применения функции: $(M\,N)$: τ .

Примеры «типизаций»

Для $x:\alpha$, $y:\alpha \to \beta$ имеем $(yx):\beta$. Добавив $z:\beta \to \gamma$, получим $z(yx):\gamma$.

А какие должны иметь типы x и y, чтобы $x(yx):\gamma$?

Как типизировать термы? (абстракция)

• Если терм *абстракция* $\lambda x. M$, то его тип должен быть стрелочным $(\lambda x. M): \sigma \rightarrow \tau$, причём тип аргумента должен быть $x:\sigma$, а тип тела абстракции — $M:\tau$.

Пример «типизации»

Для $x:\alpha$ имеем $(\lambda x. x):\alpha \rightarrow \alpha$.

- А надо ли здесь отдельно указывать, что $x:\alpha$?
 - Если не указать, то допустимо и $(\lambda x. x): \beta \to \beta$ и даже $(\lambda x. x): (\alpha \to \beta) \to (\alpha \to \beta)$ стиль Карри.
 - Если указать $(\lambda x : \alpha. x) : \alpha \to \alpha$, то тип терма определяется однозначно стиль Чёрча.

Типизируйте по Чёрчу: λx :?. λy :?. x (y x):?

Как типизировать термы? (ассоциативность)

Правила ассоциативности для типов (вправо), аппликации (влево) и абстракции (вправо) хорошо согласованы друг с другом.

В предположении $M:\alpha, N:\beta, P:\gamma, Q:\rho$

$$F: \alpha \to (\beta \to (\gamma \to \delta))$$

$$(FM): \beta \to (\gamma \to \delta)$$

$$((FM)N): \gamma \to \delta$$

$$(((FM)N)P): \delta$$

$$(\lambda y: \tau. Q): \tau \to \rho$$

$$(\lambda x: \sigma. (\lambda y: \tau. Q)): \sigma \to (\tau \to \rho)$$

Зелёные скобки опускаются.

План лекции

- Понятие типа
- 2 Просто типизированное λ-исчисление
- \odot Формализм систем λ_{\rightarrow}
- 4 Свойства λ_

Предтермы системы $\lambda_{ ightarrow}$ а ля Карри

Определение

Множество *предтермов* (или *псевдотермов*) Λ строится из переменных из $V = \{x, y, z, \ldots\}$ с помощью аппликации и абстракции:

$$\begin{array}{ccc} x \in V & \Rightarrow & x \in \Lambda \\ M, N \in \Lambda & \Rightarrow & (M \, N) \in \Lambda \\ M \in \Lambda, x \in V & \Rightarrow & (\lambda x. \, M) \in \Lambda \end{array}$$

• В абстрактном синтаксисе

$$\Lambda ::= V | (\Lambda \Lambda) | (\lambda V. \Lambda)$$

 То есть предтермы системы в стиле Карри — это в точности термы бестипового λ-исчисления.

Предермы системы $\lambda_{ ightarrow}$ а ля Чёрч

Определение

Множество *предтермов* $\Lambda_{\mathbb{T}}$ строится из переменных из $V = \{x,y,z,\ldots\}$ с помощью аппликации и аннотированной типами абстракции:

$$\begin{array}{ccc} x \in V & \Rightarrow & x \in \Lambda_{\mathbb{T}} \\ M, N \in \Lambda_{\mathbb{T}} & \Rightarrow & (M \, N) \in \Lambda_{\mathbb{T}} \\ M \in \Lambda_{\mathbb{T}}, x \in V, \sigma \in \mathbb{T} & \Rightarrow & (\lambda x \colon \sigma . \, M) \in \Lambda_{\mathbb{T}} \end{array}$$

• В абстрактном синтаксисе

$$\Lambda_{\mathbb{T}} ::= V \mid (\Lambda_{\mathbb{T}} \Lambda_{\mathbb{T}}) \mid (\lambda V : \mathbb{T} . \Lambda_{\mathbb{T}})$$

• Все соглашения о скобках и ассоциативности те же, что и в системе Λ

Примеры предтермов

Система λ_{\rightarrow} а ля Карри:

 $\lambda x y. x$ $\lambda f g x. f (g x)$ $\lambda x. x x$

Система $\lambda_{ ightarrow}$ а ля Чёрч:

$$\lambda x: \alpha. \lambda y: \beta. x \equiv \lambda x^{\alpha} y^{\beta}. x$$

$$\lambda x: \alpha. \lambda y: \alpha. x \equiv \lambda x^{\alpha} y^{\alpha}. x$$

$$\lambda f: \alpha. \lambda g: \beta. \lambda x: \gamma. f(gx) \equiv \lambda f^{\alpha} g^{\beta} x^{\gamma}. f(gx)$$

$$\lambda x: \alpha. x x \equiv \lambda x^{\alpha}. x x$$

Утверждение о типизации

Определение

Утверждение (о типизации) в $\lambda_{
ightarrow}$ «а ля Карри» имеет вид

 $M:\tau$

где $M \in \Lambda$ и $\tau \in \mathbb{T}$. Тип τ иногда называют *предикатом*, а терм M - субъектом утверждения.

Для $\lambda_{
ightarrow}$ «а ля Чёрч» надо лишь заменить Λ на $\Lambda_{\mathbb{T}}.$

Примеры утверждений о типизации

Система в стиле Карри Система в стиле Чёрча $\begin{array}{lll} (\lambda x. \, x) \colon \! \alpha \to \! \alpha & (\lambda x^{\alpha}. \, x) \colon \! \alpha \to \! \alpha \\ (\lambda x. \, x) \colon \! (\alpha \to \! \beta) \to \! \alpha \to \! \beta & (\lambda x^{\alpha \to \! \beta}. \, x) \colon \! (\alpha \to \! \beta) \to \! \alpha \to \! \beta \\ (\lambda x. \, y. \, x) \colon \! \alpha \to \! \beta \to \! \alpha & (\lambda x^{\alpha}. \, y^{\beta}. \, x) \colon \! \alpha \to \! \beta \to \! \alpha \\ \end{array}$

Объявления

Определение

Объявление — это утверждение (о типизации) с термовой переменной в качестве субъекта.

Примеры объявлений

$$f: \alpha \rightarrow \beta$$

$$g:(\alpha \rightarrow \beta) \rightarrow \gamma$$

Контексты

Определение

Контекст — это множество объявлений с *различными* переменными в качестве субъекта:

$$\Gamma = \{x_1:\sigma_1, x_2:\sigma_2, \dots, x_n:\sigma_n\}$$

Контекст иногда называют базисом или окружением.

• Фигурные скобки множества иногда опускают:

$$\Gamma = x: \alpha, y: \beta, f: \alpha \rightarrow \beta, g: (\alpha \rightarrow \beta) \rightarrow \gamma$$

 Контексты можно расширять, добавляя объявление новой переменной:

$$\Delta = \Gamma, z: \alpha \rightarrow \gamma = x: \alpha, y: \beta, f: \alpha \rightarrow \beta, g: (\alpha \rightarrow \beta) \rightarrow \gamma, z: \alpha \rightarrow \gamma$$

• Контекст можно рассматривать как (частичную) функцию из множества переменных V в множество типов $\mathbb T$.

Правила типизации $\lambda_{ ightarrow}$ «а ля Карри»

Определение

Утверждение $M : \tau$ называется **выводимым** в контексте Γ , обозначение

$$\Gamma \vdash M:\tau$$

если его вывод может быть произведен по правилам:

$$(x:\sigma) \in \Gamma \quad \Rightarrow \quad \Gamma \vdash x:\sigma$$

$$\Gamma \vdash M:\sigma \rightarrow \tau, \quad \Gamma \vdash N:\sigma \quad \Rightarrow \quad \Gamma \vdash (MN):\tau$$

$$\Gamma, x:\sigma \vdash M:\tau \quad \Rightarrow \quad \Gamma \vdash (\lambda x.M):\sigma \rightarrow \tau$$

Если существуют Γ и τ , такие что $\Gamma \vdash M:\tau$, то предтерм M называют (допустимым) термом.

Типизация λ_{\rightarrow} «а ля Карри» в виде правил вывода

$$\begin{array}{ll} \text{(аксиома)} & \Gamma \vdash x \colon \sigma, \ \mathsf{если} \ (x \colon \sigma) \in \Gamma \\ \\ \text{(удаление} \to \text{)} & \frac{\Gamma \vdash M \colon \sigma \to \tau \quad \Gamma \vdash N \colon \sigma}{\Gamma \vdash (M \, N) \colon \tau} \\ \\ \\ \text{(введение} \to \text{)} & \frac{\Gamma, x \colon \sigma \vdash M \colon \tau}{\Gamma \vdash (\lambda x \colon M) \colon \sigma \to \tau} \end{array}$$

Пример дерева вывода типа для $\lambda x y. x$

$$\frac{x:\alpha,y:\beta\vdash x:\alpha}{x:\alpha\vdash(\lambda y.x):\beta\rightarrow\alpha}$$
$$\vdash(\lambda xy.x):\alpha\rightarrow\beta\rightarrow\alpha$$

Типизация λ_{\rightarrow} «а ля Чёрч» в виде правил вывода

$$\begin{array}{ll} \text{(аксиома)} & \Gamma \vdash x \text{:} \sigma, \text{ если } (x \text{:} \sigma) \in \Gamma \\ \\ \text{(удаление} \to) & \frac{\Gamma \vdash M \text{:} \sigma \! \to \! \tau \quad \Gamma \vdash N \text{:} \sigma}{\Gamma \vdash (M \, N) \text{:} \tau} \\ \\ \text{(введение} \to) & \frac{\Gamma, x \text{:} \sigma \vdash M \text{:} \tau}{\Gamma \vdash (\lambda x \text{:} \sigma, M) \text{:} \sigma \! \to \! \tau} \end{array}$$

Вывод типа для $\lambda x^{\alpha} y^{\beta}$. x проще

$$\frac{x:\alpha,y:\beta\vdash x:\alpha}{x:\alpha\vdash(\lambda y:\beta.x):\beta\rightarrow\alpha}$$
$$\vdash(\lambda x:\alpha.\lambda y:\beta.x):\alpha\rightarrow\beta\rightarrow\alpha$$

To есть для каждых $\alpha, \beta \in \mathbb{T}$ верно $\vdash (\lambda x^{\alpha} y^{\beta}. x) : \alpha \rightarrow \beta \rightarrow \alpha$.

План лекции

- Понятие типа
- Просто типизированное λ-исчисление
- \odot Формализм систем λ_{\rightarrow}
- f 4 Свойства $\lambda_{
 ightarrow}$

Технические леммы

Лемма об инверсии (лемма генерации)

- $\Gamma \vdash x : \sigma \Rightarrow (x : \sigma) \in \Gamma$.
- $\Gamma \vdash (M \ N) : \tau \Rightarrow \exists \sigma \ [\Gamma \vdash M : \sigma \rightarrow \tau \land \Gamma \vdash N : \sigma].$
- $\Gamma \vdash (\lambda x. M) : \rho \Rightarrow \exists \sigma, \tau \ [\Gamma, x : \sigma \vdash M : \tau \land \rho \equiv \sigma \rightarrow \tau]. \ (\lambda \rightarrow a$ ля Карри)
- $\Gamma \vdash (\lambda x : \sigma. M) : \rho \Rightarrow \exists \tau \ [\Gamma, x : \sigma \vdash M : \tau \land \rho \equiv \sigma \rightarrow \tau]. \ (\lambda \rightarrow a$ ля Чёрч)

Лемма о типизируемости подтерма

Пусть M' — подтерм M. Тогда $\Gamma \vdash M : \sigma \Rightarrow \Gamma' \vdash M' : \sigma'$ для некоторых Γ' и σ' .

То есть, если терм имеет тип, то каждый его подтерм тоже имеет тип.

Леммы о контекстах

Какой контекст требуется, чтобы произвести присваивание типов?

Лемма «разбавления» (Thinning)

Пусть Γ и Δ — контексты, причём $\Delta \supseteq \Gamma$. Тогда $\Gamma \vdash M \colon \sigma \ \Rightarrow \ \Delta \vdash M \colon \sigma$. Расширение контекста не влияет на выводимость утверждения типизации.

Лемма о свободных переменных

 $\Gamma \vdash M \colon \sigma \Rightarrow FV(M) \subseteq \mathrm{dom}(\Gamma)$. Свободные переменные типизированного терма должны присутствовать в контексте.

Лемма сужения

 $\Gamma \vdash M \colon \sigma \Rightarrow \Gamma \upharpoonright FV(M) \vdash M \colon \sigma$. Сужение контекста до множества свободных переменных терма не влияет на выводимость утверждения типизации.

Свойства λ_{\rightarrow} : нетипизируемые предтермы

- Рассмотрим предтерм х х. Предположим, что это терм.
- Тогда имеются Γ и σ, такие что

$$\Gamma \vdash (x x) : \sigma$$

- По лемме об инверсии существует такой au, что правый подтерм x:au, а левый подтерм (тоже x) имеет тип $au \! \to \! \sigma$.
- По лемме о контекстах $x \in \text{dom}(\Gamma)$ и должен иметь там единственное связывание по определению контекста. То есть $\tau = \tau \! \to \! \sigma$ тип является подвыражением себя, чего не может быть, поскольку (и пока) типы конечны.

$$x:\tau \not\vdash (xx):\sigma, \quad \not\vdash \omega:\sigma, \quad \not\vdash \Omega:\sigma, \quad \not\vdash Y:\sigma.$$

Предтермы $\pmb{\omega}=\lambda x.\,x\,x$, $\pmb{\Omega}=\pmb{\omega}\,\pmb{\omega}$ и $\pmb{Y}=\lambda f.\,(\lambda x.\,f(x\,x))(\lambda x.\,f(x\,x))$ не имеют типа по лемме о типизируемости подтерма.

Лемма подстановки типа для $\lambda_{ ightarrow}$

Определение

Для $\sigma, \tau \in \mathbb{T}$ **подстановку** τ вместо α в σ обозначим $[\alpha := \tau]\sigma$.

Пример

$$[\alpha := \gamma \to \gamma](\alpha \to \beta \to \alpha) = (\gamma \to \gamma) \to \beta \to \gamma \to \gamma$$

Лемма подстановки типа

$$\Gamma \vdash M : \sigma \Rightarrow [\alpha := \tau]\Gamma \vdash M : [\alpha := \tau]\sigma. (\lambda_{\to} \text{ а ля Карри})$$
 $\Gamma \vdash M : \sigma \Rightarrow [\alpha := \tau]\Gamma \vdash [\alpha := \tau]M : [\alpha := \tau]\sigma. (\lambda_{\to} \text{ а ля Чёрч})$

Пример. Подстановка $[\alpha := \gamma \rightarrow \gamma]$:

$$x: \alpha \vdash (\lambda y^{\alpha} z^{\beta}. x): \alpha \to \beta \to \alpha \Rightarrow$$
$$x: \gamma \to \gamma \vdash (\lambda y^{\gamma \to \gamma} z^{\beta}. x): (\gamma \to \gamma) \to \beta \to \gamma \to \gamma$$

Лемма подстановки $extit{терма}$ для $\lambda_{ ightarrow}$

Лемма подстановки терма

Пусть $\Gamma, x: \sigma \vdash M: \tau$ и $\Gamma \vdash N: \sigma$, тогда $\Gamma \vdash M[x:=N]: \tau$.

То есть, подходящая по типу подстановка терма сохраняет тип.

Пример

Берём терм

$$x: \gamma \rightarrow \gamma \vdash (\lambda y^{\beta}. x): \beta \rightarrow \gamma \rightarrow \gamma$$

и подставляем в него вместо свободной переменной $x:\gamma\to\gamma$ терм $\mathbf{I}_{\gamma}\equiv\lambda p^{\gamma}.$ р подходящего типа $\gamma\to\gamma$. Получаем

$$\vdash (\lambda y^{\beta} p^{\gamma}.p): \beta \rightarrow \gamma \rightarrow \gamma$$

Редукция субъекта в $\lambda_{ ightarrow}$

Теорема о редукции субъекта

Пусть $M \twoheadrightarrow_{\beta} N$. Тогда $\Gamma \vdash M : \sigma \Rightarrow \Gamma \vdash N : \sigma$.

- То есть тип терма сохраняется при β-редукциях.
- С «вычислительной» точки зрения это одно из ключевых свойств любой системы типов.

Следствие

Множество типизируемых в $\lambda_{
ightarrow}$ термов замкнуто относительно редукции.

Единственность типа в $\lambda_{ ightarrow}$

Теорема о единственности типа для $\lambda_{ ightarrow}$ а ля Чёрч

Пусть $\Gamma \vdash M$: σ и $\Gamma \vdash M$: τ . Тогда $\sigma \equiv \tau$.

Tерм в $\lambda_{
ightarrow}$ а ля 4ёрч имеет единственный тип.

Следствие

Пусть $\Gamma \vdash M \colon \sigma$, $\Gamma \vdash N \colon \tau$ и $M =_{\beta} N$. Тогда $\sigma \equiv \tau$.

Типизируемые β -конвертируемые термы имеют одинаковый тип в λ_{\rightarrow} а ля Чёрч.

Контрпример

Оба типа подходят для $\mathbf{K} = \lambda x \, \mathbf{y}. \, \mathbf{x}$ в $\lambda_{
ightarrow}$ а ля Карри:

$$\vdash (\lambda x y. x) : \alpha \!\rightarrow\! (\delta \!\rightarrow\! \gamma \!\rightarrow\! \delta) \!\rightarrow\! \alpha$$

$$\vdash (\lambda x y. x) : (\gamma \rightarrow \gamma) \rightarrow \beta \rightarrow \gamma \rightarrow \gamma$$

Для систем в стиле Карри единственности типа нет.

Связь между системами Карри и Чёрча

ullet Можно задать стирающее отображение $|\cdot|:\Lambda_{\mathbb{T}} o \Lambda$:

$$|x| \equiv x$$

$$|M N| \equiv |M| |N|$$

$$|\lambda x : \sigma. M| \equiv \lambda x. |M|$$

$$M \in \Lambda_{\mathbb{T}} \ \land \ \Gamma \vdash_{\mathsf{Y}} M : \sigma \ \Rightarrow \ \Gamma \vdash_{\mathsf{K}} |M| : \sigma$$

$$M \in \Lambda \ \land \ \Gamma \vdash_{\mathsf{K}} M : \sigma \ \Rightarrow \ \exists N \in \Lambda_{\mathbb{T}} \left[\Gamma \vdash_{\mathsf{Y}} N : \sigma \ \land \ |N| \equiv M \right]$$

ullet Для произвольного типа $\sigma\in\mathbb{T}$ выполняется

$$\sigma$$
 обитаем в λ → -Карри $\,\Leftrightarrow\,$ σ обитаем в λ → -Чёрч

Проблемы разрешимости

• Есть ли алгоритм, который позволяют решить задачу?

⊢ M∶σ?	Задача проверки типа Type Checking Problem	3ПТ ТСР
⊢ M:?	Задача синтеза типа Type Synthesis (or Assgnment) Problem	3CT TSP, TAP
⊢ ?:σ	Задача обитаемости типа Type Inhabitation Problem	30T TIP

- Для λ_{\to} (и в стиле Чёрча, и в стиле Карри) все эти задачи разрешимы.
- ЗПТ выглядит проще ЗСТ, но обычно они эквивалентны: проверка $(M \ N)$: σ ? требует синтеза N:?.

Слабая и сильная нормализация

Определение

Терм называют *слабо (weak) нормализуемым* (WN), если существует последовательность редукций, приводящих его к нормальной форме.

Определение

Терм называют *сильно (strong) нормализуемым* (SN), если любая последовательность редукций, приводит его к нормальной форме.

Примеры

Терм KIK — сильно нормализуем,

терм $K I \Omega$ — слабо нормализуем,

терм Ω — не нормализуем.

T еорема о нормализации $\lambda_{ ightarrow}$

Определение

Систему типов называют *слабо нормализуемой* если все её допустимые термы слабо нормализуемы.

Определение

Систему типов называют *сильно нормализуемой* если все её допустимые термы сильно нормализуемы.

T еорема о нормализации $\lambda_{ ightarrow}$

Обе системы λ_{\rightarrow} (и Карри, и Чёрча) *сильно нормализуемы*.

To есть любой допустимый терм в λ_{\to} всегда редуцируется к нормальной форме.

