ML 32. Пусть сигнатура содержит только одноместные предикатные символы. Покажите, что:

- а) всякая выполнимая формула, содержащая n предикатных символов, выполнима и в интерпретации, в носителе которой не более 2^n элементов;
- б) существует алгоритм, проверяющий выполнимость таких формул.

ML 33. Приведите пример формулы, которая истинна во всех интерпретациях с конечным носителем, но не является общезначимой.

ML 34. Докажите общезначимость следующих формул при помощи алгоритма рассказаного на лекции (перейти к отрицанию, привести к предваренной форме применить сколемизацию и воспользоваться теоремой Эрбрана):

- a) $\forall x \ P(x) \rightarrow \exists x \ P(x)$;
- б) $\forall x \forall y \ P(x,y) \rightarrow \forall y \ \exists x \ P(x,y);$
- B) $(\exists x \ (P(x) \to Q(x))) \to (\forall x \ P(x) \to \exists x \ Q(x));$
- $\Gamma) (\forall x \ P(x) \to \exists x \ Q(x)) \to (\exists x \ (P(x) \to Q(x)));$
- $\exists x \ (A(c,x) \to A(x,d)).$

ML 35. Докажите корректность секвенциального исчисления.

ML 36. Покажите, что следующие формулы выводимы в исчислении секвенций (формула φ выводима, если выводима $\vdash \varphi$):

- a) $\forall x \ P(x) \rightarrow \exists x \ P(x);$
- 6) $\forall x \forall y \ P(x,y) \rightarrow \forall y \ \exists x \ P(x,y);$
- B) $(\exists x (P(x) \to Q(x))) \to (\forall x P(x) \to \exists x Q(x));$
- Γ) $(\forall x \ P(x) \to \exists x \ Q(x)) \to (\exists x \ (P(x) \to Q(x)));$
- $\exists x \ (A(c,x) \to A(x,d)).$

ML 22. Задача Поста состоит в следующем: есть доминошки n видов $\left[\frac{s_1}{t_1}\right], \ldots, \left[\frac{s_n}{t_n}\right], s_i$ и t_i — конечные строки, есть неограниченный запас доминошек каждого вида, доминошки переворачивать нельзя. Требуется определить, можно ли составить несколько доминошек так, чтобы в верхней и нижней их половине читалась одна и та же строка, такие последовательности доминошек будем называть согласованными. Докажите, что задача Поста алгоритмически неразрешима.

[ML 28.] Докажите, что для любой вычислимой функции f в любой главной нумерации (главной универсальной функции) V(n,x) существует бесконечное число номеров n, что для любого x выполнено, что V(n,x) = f(x) (при чем V(n,x) не определенно тогда и только тогда, когда f(x) не определена).

ML 29. Покажите, что существуют универсальная вычислимая функция, которая не является главной.

ML 30. Пусть $H = \{(n,x) \mid < n > (x) \text{ останавливается} \}$. Покажите, что $H \in \Sigma_1$ и любое множество из Σ_1 m-сводится к H.

ML 31. Покажите, что множество номеров алгоритмов, которые не останавливаются ни на одном входе

- а) лежит в классе Π_1 ;
- б) любое другое множество из Π_1 *m*-сводится к этому множеству;
- в) покажите, что это множество не лежит в Σ_1 .