Основные определения теории графов. Пути, циклы.

Невозрастающая последовательность неотрицательных чисел

$$\mathbf{d} := (d_1, d_2, \dots, d_n) : d_1 \ge d_2 \ge \dots \ge d_n \ge 0$$

называется графовой, если она является последовательностью степеней вершин некоторого простого графа G.

- 1. Рассмотрим произвольную смежную пару вершин $\{x,y\}$ в простом графе G на n вершинах. Доказать, что ребро $e=\{x,y\}$ принадлежит по меньшей мере $\deg(x)+\deg(y)-n$ треугольникам в графе G (сведение к раскладке предметов по ящикам).
- 2. Пусть G есть простой граф, построенный на 9 вершинах. Предположим, что сумма степеней вершин графа G больше или равна 27. Правда ли, что в таком графе обязательно существует вершина, степень которой больше или равна четырем ?
- 3. Рассмотрим невозрастающую последовательность неотрицательных целых чисел

$$d_1 \ge d_2 \ge \ldots \ge d_n \ge 0.$$

Доказать, что такая последовательность является степенной последовательностью некоторого графа G без петель тогда и только тогда, когда сумма всех этих чисел есть четное число и выполняется неравенство

$$d_1 \le d_2 + d_3 + \ldots + d_n$$

- 4. Любой элемент $a_{i,j}$ матрицы M_a смежности графа G можно трактовать как количество путей длины 1 в графе G из вершины i в вершину j. Чему равны с этой точки зрения элементы матрицы M_a^2 ? Можно ли обобщить данный результат на случай произвольной степени k > 1 матрицы M_a ?
- 5. Орграф D называется сбалансированным, если для любой вершины $x \in V(D)$ выполняется неравенство

$$|outdeg(x) - indeg(x)| \le 1.$$

Доказать, что из любого неориентированного графа G можно получить направленный сбалансированный орграф D (первая теорема для орграфа).

- 6. Доказать, что в простом графе с $\Delta = n-2$ и диаметром 2 количество ребер $m \geq 2n-4$ (определения).
- 7. Пусть G есть простой граф, диаметр которого $diam(G) \ge 3$. Доказать, что его дополнение \bar{G} имеет диаметр $diam(\bar{G}) \le 3$ (определения).
- 8. Какое максимальное количество ребер может быть в простом слабо связном ориентированном графе на n вершинах, не являющемся сильно связным (определения, несвязный)?
- 9. Доказать, что простой граф G, построенный на 10 вершинах и имеющий 28 ребер, содержит цикл длины 4.
- 10. Пусть G есть граф с обхватом $g(G) \geq 5$ и минимальной степенью вершины $\delta \geq k$. Доказать, что в таком графе по меньшей мере k^2+1 вершин. Для случая k=2 предъявить граф, имеющий в точности k^2+1 (определения).
- 11. Пусть G есть произвольный простой несвязный граф. Доказать, что его дополнение \bar{G} всегда является связным графом. Чему равен диаметр графа \bar{G} ?
- 12. Доказать, что в простом графе с обхватом, большим или равным 2k, диаметр больше или равен k.