Is at least one predictor useful?

For the first question, we can use the F-statistic

(TSS — RSS)/p

F = ~F,
RSS/(n—p—1) PP
Quantity Value
Residual Standard Error | 1.69
R? 0.897
F-statistic 570




Deciding on the important variables

e The most direct approach is called all subsets or best
subsets regression: we compute the least squares fit for all
possible subsets and then choose between them based on
some criterion that balances training error with model size.
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Deciding on the important variables

e The most direct approach is called all subsets or best
subsets regression: we compute the least squares fit for all
possible subsets and then choose between them based on
some criterion that balances training error with model size.

e However we often can’t examine all possible models, since
they are 2P of them; for example when p = 40 there are
over a billion models!

Instead we need an automated approach that searches
through a subset of them. We discuss two commonly use
approaches next.



Forward selection

Begin with the null model — a model that contains an
intercept but no predictors.

Fit p simple linear regressions and add to the null model
the variable that results in the lowest RSS.

Add to that model the variable that results in the lowest
RSS amongst all two-variable models.

Continue until some stopping rule is satisfied, for example
when all remaining variables have a p-value above some

threshold.



Backward selection

Start with all variables in the model.

Remove the variable with the largest p-value — that is, the
variable that is the least statistically significant.

The new (p — 1)-variable model is fit, and the variable with
the largest p-value is removed.

Continue until a stopping rule is reached. For instance, we
may stop when all remaining variables have a significant
p-value defined by some significance threshold.
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Model selection — continued

e Later we discuss more systematic criteria for choosing an
“optimal” member in the path of models produced by
forward or backward stepwise selection.

e These include Mallow’s C), Akaike information criterion
(AIC), Bayesian information criterion (BIC), adjusted R*
and Cross-validation (CV).
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Other Considerations in the Regression Model

Qualitative Predictors

e Some predictors are not quantitative but are qualitative,
taking a discrete set of values.

e These are also called categorical predictors or factor
variables.

e See for example the scatterplot matrix of the credit card
data in the next slide.

In addition to the 7 quantitative variables shown, there are
four qualitative variables: gender, student (student
status), status (marital status), and ethnicity
(Caucasian, African American (AA) or Asian).
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Credit Card Data
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Qualitative Predictors — continued

Example: investigate differences in credit card balance between
males and females, ignoring the other variables. We create a
new variable

1 if ith person is female
T =
‘ 0 if ith person is male
Resulting model:

Bo + 51+ € if ith person is female
inﬁoJrﬁle—Gi:{ ’

Bo + € if ith person is male.

Intrepretation?
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Credit card data — continued

Results for gender model:

Coefficient  Std. Error t-statistic p-value
Intercept 509.80 33.13 15.389 < 0.0001
gender [Female] 19.73 46.05 0.429 0.6690
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Qualitative predictors with more than two levels

e With more than two levels, we create additional dummy
variables. For example, for the ethnicity variable we
create two dummy variables. The first could be

1 if ¢th person is Asian
Tyl =

0 if ith person is not Asian,

and the second could be

1 if ¢th person is Caucasian
Ti2 = P . .
’ 0 if 7th person is not Caucasian.



Qualitative predictors with more than two levels —
continued.

e Then both of these variables can be used in the regression
equation, in order to obtain the model

Bo+B1+ e if sth person is Asian
yi = Po+Prixin+Paxiztes =< Bo+ B2+ € if ith person is Caucasian
Bo + € if 4th person is AA.

e There will always be one fewer dummy variable than the
number of levels. The level with no dummy variable —
African American in this example — is known as the
baseline.



Results for ethnicity

Coefficient  Std. Error t-statistic p-value
Intercept 531.00 46.32 11.464 < 0.0001
ethnicity[Asian] -18.69 65.02 -0.287 0.7740
ethnicity[Caucasian] -12.50 56.68 -0.221 0.8260




Extensions of the Linear Model

Removing the additive assumption: interactions and
nonlinearity

Interactions:

e In our previous analysis of the Advertising data, we
assumed that the effect on sales of increasing one
advertising medium is independent of the amount spent on
the other media.

e For example, the linear model
sales = Bo + B1 X TV + B2 x radio + 33 X newspaper

states that the average effect on sales of a one-unit
increase in TV is always (1, regardless of the amount spent
on radio.



Interactions — continued

e But suppose that spending money on radio advertising
actually increases the effectiveness of TV advertising, so
that the slope term for TV should increase as radio
increases.

e In this situation, given a fixed budget of $100, 000,
spending half on radio and half on TV may increase sales
more than allocating the entire amount to either TV or to
radio.

e In marketing, this is known as a synergy effect, and in
statistics it is referred to as an interaction effect.
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Interaction in the Advertising data?

Radio

When levels of either TV or radio are low, then the true sales
are lower than predicted by the linear model.

But when advertising is split between the two media, then the
model tends to underestimate sales.
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Modelling interactions — Advertising data

Model takes the form

sales = [p+ 01 X TV+ By x radio + f3 X (radio X TV) + ¢
= Bo+ (81 + B3 X radio) X TV + 2 x radio + €.
Results:
Coefficient  Std. Error t-statistic = p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TVxradio 0.0011 0.000 20.73 < 0.0001
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Interpretation

e The results in this table suggests that interactions are
important.

e The p-value for the interaction term TVxradio is
extremely low, indicating that there is strong evidence for
Hy: B3 #0.

e The R? for the interaction model is 96.8%, compared to
only 89.7% for the model that predicts sales using TV and
radio without an interaction term.



Interpretation — continued

e This means that (96.8 —89.7)/(100 — 89.7) = 69% of the
variability in sales that remains after fitting the additive
model has been explained by the interaction term.

e The coefficient estimates in the table suggest that an
increase in TV advertising of $1,000 is associated with
increased sales of
(B1 + B3 x radio) x 1000 = 19 + 1.1 x radio units.

e An increase in radio advertising of $1,000 will be
aSAsociaAted with an increase in sales of
(B2 + B3 x TV) x 1000 = 29 + 1.1 X TV units.



Hierarchy

e Sometimes it is the case that an interaction term has a
very small p-value, but the associated main effects (in this
case, TV and radio) do not.

e The hierarchy principle:

If we include an interaction in a model, we should also
include the main effects, even if the p-values associated
with their coefficients are not significant.
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Hierarchy — continued

e The rationale for this principle is that interactions are hard
to interpret in a model without main effects — their
meaning is changed.

e Specifically, the interaction terms also contain main effects,
if the model has no main effect terms.



Interactions between qualitative and quantitative
variables

Consider the Credit data set, and suppose that we wish to
predict balance using income (quantitative) and student
(qualitative).

Without an interaction term, the model takes the form

B2 if 4th person is a student
0

balance; =~ o + £1 X income; +
‘ bot+ B ’ { if 4th person is not a student

Bo + B2 if 4th person is a student
Bo if 4th person is not a student.

B1 X income; + {



With interactions, it takes the form

balance; =~ [+ 1 X income; +

{(/30 + B2) + (B1 + B3) X income;

Bo + 1 X income;

{52 + B3 X income; if student

if not student

if student

if not student
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The figure suggests that
mpg = fp + B1 X horsepower + 32 x horsepower? + €

may provide a better fit.

Coefficient Std. Error t-statistic = p-value

Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower -0.4662 0.0311 -15.0 < 0.0001
horsepower? 0.0012 0.0001 10.1 < 0.0001




Generalizations of the Linear Model

In much of the rest of this course, we discuss methods that
expand the scope of linear models and how they are fit:

e Classification problems: logistic regression, support vector
machines

o Non-linearity: kernel smoothing, splines and generalized
additive models; nearest neighbor methods.

e Interactions: Tree-based methods, bagging, random forests
and boosting (these also capture non-linearities)

e Regularized fitting: Ridge regression and lasso
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