- $\overline{\mathbf{ML}\ \mathbf{16.}}$ Докажите, что $\mathbf{PH} \subseteq \mathbf{PSPACE}$.
- $\boxed{\mathbf{ML}\ \mathbf{17.}}$ Докажите, что $\Sigma_i \subseteq \mathbf{NP}^{\Sigma_{i-1}}$.

ML 18. Приведите пример разрешимого языка из P/poly, который не лежит в P.

ML 19. Докажите, что **NTime** $[n] \neq$ **PSPACE**.

Определение 1. Пусть A — класс языков. Класс $\mathbf{NP}^{A[k]}$ — класс языков, для которых существует полиномиальный недетерминированный алгоритм, который может обращаться к оракулу из класса A не более k раз.

 \mathbf{ML} **20.** Пусть $L \in \mathbf{NP^{NP}}$, докажите, что:

- $\overline{{\bf a}) \ L \in {\bf NP^{NP}^{[1]}} \ ($ подсказка: рассмотрите оракул SAT и «угадайте» ответы оракула);
- 6) $\mathbf{NP^{NP}} \subseteq \Sigma_2$.

ML 21. Докажите, что язык булевых формул с ровно одним выполняющим набором (USAT):

- а) со**NP**-трудным;
- 6) лежит в $\mathbf{P}^{\mathbf{NP}}$.

ML 22. Докажите, что язык $L = \{(\varphi, 1^k) \mid функция, заданная формулой <math>\varphi$, не может быть посчитана формулой размера $k\}$ лежит в **PH**.

ML 4. Пусть функции $f,g:\{0,1\}^* \to \{0,1\}^*$ можно посчитать с использованием $O(\log(n))$ памяти (память считается только на рабочих лентах, входная лента доступна только для чтения, а по выходной ленте головка машины Тьюринга движется только слева направо). Докажите, что функцию f(g(x)) можно также посчитать с использованием $O(\log(n))$ памяти.

[ML 9.] Докажите, что существует язык, для которого любой алгоритм, работающий время $O(n^2)$ решает его правильно на менее, чем на половине входов какой-то длины, но этот язык распознается алгоритмом, работающим время $O(n^3)$.

ML 10. Докажите, что:

- $\overline{\mathbf{a})} \ \mathbf{DSpace}[n^2] \subsetneq \mathbf{DSpace}[n^3];$
- 6) $\mathbf{NSpace}[n^2] \subsetneq \mathbf{NSpace}[n^3].$

 $[ML\ 11.]$ Унарным назвается язык, все слова которого состоят из одного символа. Докажите, что если все унарные языки из NP лежат в P, то EXP = NEXP.

ML 13. Покажите, что:

- $\overline{\mathbf{a}} \ \mathbf{P}^{\mathbf{P}} = \mathbf{P};$
- б) язык GNI (пар неизоморфных графов) лежит в $\mathbf{P^{NP}}$.

ML 14. Покажите, что:

- $\overline{a)} \ \overline{P \subseteq NP \cap coNP};$
- б) **NP** ⊂ **EXP**.

ML 47. Пусть T — теория (множество замкнутых формул) следующего языка: $\{<,R,B\}$, где R (red) и B (blue) унарные предикаты. T содержит все аксиомы плотного линейного порядка без первого и последнего элемента, а также:

- $\forall xy \; \exists zw \; (x < z < w < y \; \land \; R(z) \; \land \; B(w));$
- $\forall x (R(x) \lor B(x));$
- $\forall x \ (R(x) \leftrightarrow \neg B(x).$

Докажите, что любые интерпретации данной теории на счетном множестве изоморфны.

 $\overline{\mathbf{ML}\ \mathbf{52.}}$ Будет ли теория $\mathtt{Th}((\mathbb{N},<,=))$ конечно аксиоматизируемой.