Linear regression

- Linear regression is a simple approach to supervised learning. It assumes that the dependence of Y on $X_{1}, X_{2}, \ldots X_{p}$ is linear.

Linear regression

- Linear regression is a simple approach to supervised learning. It assumes that the dependence of Y on $X_{1}, X_{2}, \ldots X_{p}$ is linear.
- True regression functions are never linear!

Linear regression

- Linear regression is a simple approach to supervised learning. It assumes that the dependence of Y on $X_{1}, X_{2}, \ldots X_{p}$ is linear.
- True regression functions are never linear!

- although it may seem overly simplistic, linear regression is extremely useful both conceptually and practically.

Linear regression for the advertising data

Consider the advertising data shown on the next slide.
Questions we might ask:

- Is there a relationship between advertising budget and sales?
- How strong is the relationship between advertising budget and sales?
- Which media contribute to sales?
- How accurately can we predict future sales?
- Is the relationship linear?
- Is there synergy among the advertising media?

Advertising data

Simple linear regression using a single predictor X.

- We assume a model

$$
Y=\beta_{0}+\beta_{1} X+\epsilon,
$$

where β_{0} and β_{1} are two unknown constants that represent the intercept and slope, also known as coefficients or parameters, and ϵ is the error term.

- Given some estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ for the model coefficients, we predict future sales using

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x
$$

where \hat{y} indicates a prediction of Y on the basis of $X=x$. The hat symbol denotes an estimated value.

Estimation of the parameters by least squares

- Let $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ be the prediction for Y based on the i th value of X. Then $e_{i}=y_{i}-\hat{y}_{i}$ represents the i th residual

Estimation of the parameters by least squares

- Let $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ be the prediction for Y based on the i th value of X. Then $e_{i}=y_{i}-\hat{y}_{i}$ represents the i th residual
- We define the residual sum of squares (RSS) as

$$
\mathrm{RSS}=e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2},
$$

or equivalently as
$\operatorname{RSS}=\left(y_{1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1}\right)^{2}+\left(y_{2}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{2}\right)^{2}+\ldots+\left(y_{n}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{n}\right)^{2}$.

Estimation of the parameters by least squares

- Let $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ be the prediction for Y based on the i th value of X. Then $e_{i}=y_{i}-\hat{y}_{i}$ represents the i th residual
- We define the residual sum of squares (RSS) as

$$
\mathrm{RSS}=e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2},
$$

or equivalently as
$\operatorname{RSS}=\left(y_{1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1}\right)^{2}+\left(y_{2}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{2}\right)^{2}+\ldots+\left(y_{n}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{n}\right)^{2}$.

- The least squares approach chooses $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ to minimize the RSS. The minimizing values can be shown to be

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x},
\end{aligned}
$$

where $\bar{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_{i}$ and $\bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_{i}$ are the sample means.

Example: advertising data

The least squares fit for the regression of sales onto TV.
In this case a linear fit captures the essence of the relationship, although it is somewhat deficient in the left of the plot.

Assessing the Accuracy of the Coefficient Estimates

- The standard error of an estimator reflects how it varies under repeated sampling. We have
$\operatorname{SE}\left(\hat{\beta}_{1}\right)^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \quad \mathrm{SE}\left(\hat{\beta}_{0}\right)^{2}=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right]$
where $\sigma^{2}=\operatorname{Var}(\epsilon)$

Assessing the Accuracy of the Coefficient Estimates

- The standard error of an estimator reflects how it varies under repeated sampling. We have

$$
\operatorname{SE}\left(\hat{\beta}_{1}\right)^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \quad \operatorname{SE}\left(\hat{\beta}_{0}\right)^{2}=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right]
$$

where $\sigma^{2}=\operatorname{Var}(\epsilon)$

- These standard errors can be used to compute confidence intervals. A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter. It has the form

$$
\hat{\beta}_{1} \pm 2 \cdot \mathrm{SE}\left(\hat{\beta}_{1}\right)
$$

Confidence intervals - continued

That is, there is approximately a 95% chance that the interval

$$
\left[\hat{\beta}_{1}-2 \cdot \mathrm{SE}\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+2 \cdot \mathrm{SE}\left(\hat{\beta}_{1}\right)\right]
$$

will contain the true value of β_{1} (under a scenario where we got repeated samples like the present sample)

Confidence intervals - continued

That is, there is approximately a 95% chance that the interval

$$
\left[\hat{\beta}_{1}-2 \cdot \mathrm{SE}\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+2 \cdot \mathrm{SE}\left(\hat{\beta}_{1}\right)\right]
$$

will contain the true value of β_{1} (under a scenario where we got repeated samples like the present sample)

For the advertising data, the 95% confidence interval for β_{1} is [0.042, 0.053]

Hypothesis testing

- Standard errors can also be used to perform hypothesis tests on the coefficients. The most common hypothesis test involves testing the null hypothesis of
H_{0} : \quad There is no relationship between X and Y versus the alternative hypothesis
$H_{A}: \quad$ There is some relationship between X and Y.

Hypothesis testing

- Standard errors can also be used to perform hypothesis tests on the coefficients. The most common hypothesis test involves testing the null hypothesis of

$$
\begin{array}{ll}
H_{0}: & \text { There is no relationship between } X \text { and } Y \\
& \text { versus the alternative hypothesis } \\
H_{A}: & \text { There is some relationship between } X \text { and } Y .
\end{array}
$$

- Mathematically, this corresponds to testing

$$
H_{0}: \beta_{1}=0
$$

versus

$$
H_{A}: \beta_{1} \neq 0
$$

since if $\beta_{1}=0$ then the model reduces to $Y=\beta_{0}+\epsilon$, and X is not associated with Y.

Hypothesis testing - continued

- To test the null hypothesis, we compute a t-statistic, given by

$$
t=\frac{\hat{\beta}_{1}-0}{\operatorname{SE}\left(\hat{\beta}_{1}\right)}
$$

- This will have a t-distribution with $n-2$ degrees of freedom, assuming $\beta_{1}=0$.
- Using statistical software, it is easy to compute the probability of observing any value equal to $|t|$ or larger. We call this probability the p-value.

Results for the advertising data

	Coefficient	Std. Error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	<0.0001
TV	0.0475	0.0027	17.67	<0.0001

Assessing the Overall Accuracy of the Model

- We compute the Residual Standard Error

$$
\mathrm{RSE}=\sqrt{\frac{1}{n-2} \mathrm{RSS}}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}},
$$

where the residual sum-of-squares is $R S S=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$.

Assessing the Overall Accuracy of the Model

- We compute the Residual Standard Error

$$
\mathrm{RSE}=\sqrt{\frac{1}{n-2} \mathrm{RSS}}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}},
$$

where the residual sum-of-squares is $R S S=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$.

- R-squared or fraction of variance explained is

$$
R^{2}=\frac{\mathrm{TSS}-\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}
$$

where $\operatorname{TSS}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ is the total sum of squares.

Assessing the Overall Accuracy of the Model

- We compute the Residual Standard Error

$$
\mathrm{RSE}=\sqrt{\frac{1}{n-2} \mathrm{RSS}}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}},
$$

where the residual sum-of-squares is $R S S=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$.

- R-squared or fraction of variance explained is

$$
R^{2}=\frac{\mathrm{TSS}-\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}
$$

where $\operatorname{TSS}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ is the total sum of squares.

- It can be shown that in this simple linear regression setting that $R^{2}=r^{2}$, where r is the correlation between X and Y :

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} .
$$

Advertising data results

Quantity	Value
Residual Standard Error	3.26
R^{2}	0.612
F-statistic	312.1

Multiple Linear Regression

- Here our model is

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}+\epsilon
$$

- We interpret β_{j} as the average effect on Y of a one unit increase in X_{j}, holding all other predictors fixed. In the advertising example, the model becomes
sales $=\beta_{0}+\beta_{1} \times \mathrm{TV}+\beta_{2} \times$ radio $+\beta_{3} \times$ newspaper $+\epsilon$.

Interpreting regression coefficients

- The ideal scenario is when the predictors are uncorrelated - a balanced design:
- Each coefficient can be estimated and tested separately.
- Interpretations such as "a unit change in X_{j} is associated with a β_{j} change in Y, while all the other variables stay fixed", are possible.
- Correlations amongst predictors cause problems:
- The variance of all coefficients tends to increase, sometimes dramatically
- Interpretations become hazardous - when X_{j} changes, everything else changes.
- Claims of causality should be avoided for observational data.

The woes of (interpreting) regression coefficients

"Data Analysis and Regression" Mosteller and Tukey 1977

- a regression coefficient β_{j} estimates the expected change in Y per unit change in X_{j}, with all other predictors held fixed. But predictors usually change together!

The woes of (interpreting) regression coefficients

"Data Analysis and Regression" Mosteller and Tukey 1977

- a regression coefficient β_{j} estimates the expected change in Y per unit change in X_{j}, with all other predictors held fixed. But predictors usually change together!
- Example: Y total amount of change in your pocket; $X_{1}=\#$ of coins; $X_{2}=\#$ of pennies, nickels and dimes. By itself, regression coefficient of Y on X_{2} will be >0. But how about with X_{1} in model?

The woes of (interpreting) regression coefficients

"Data Analysis and Regression" Mosteller and Tukey 1977

- a regression coefficient β_{j} estimates the expected change in Y per unit change in X_{j}, with all other predictors held fixed. But predictors usually change together!
- Example: Y total amount of change in your pocket; $X_{1}=\#$ of coins; $X_{2}=\#$ of pennies, nickels and dimes. By itself, regression coefficient of Y on X_{2} will be >0. But how about with X_{1} in model?
- $Y=$ number of tackles by a football player in a season; W and H are his weight and height. Fitted regression model is $\hat{Y}=b_{0}+.50 \mathrm{~W}-.10 \mathrm{H}$. How do we interpret $\hat{\beta}_{2}<0$?

Two quotes by famous Statisticians

"Essentially, all models are wrong, but some are useful"
George Box

Two quotes by famous Statisticians

"Essentially, all models are wrong, but some are useful"
George Box
"The only way to find out what will happen when a complex system is disturbed is to disturb the system, not merely to observe it passively"

Fred Mosteller and John Tukey, paraphrasing George Box

Estimation and Prediction for Multiple Regression

- Given estimates $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots \hat{\beta}_{p}$, we can make predictions using the formula

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\cdots+\hat{\beta}_{p} x_{p}
$$

- We estimate $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ as the values that minimize the sum of squared residuals

$$
\begin{aligned}
\operatorname{RSS} & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\cdots-\hat{\beta}_{p} x_{i p}\right)^{2}
\end{aligned}
$$

This is done using standard statistical software. The values $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{p}$ that minimize RSS are the multiple least squares regression coefficient estimates.

Results for advertising data

	Coefficient	Std. Error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	<0.0001
TV	0.046	0.0014	32.81	<0.0001
radio	0.189	0.0086	21.89	<0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Correlations:

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Some important questions

1. Is at least one of the predictors $X_{1}, X_{2}, \ldots, X_{p}$ useful in predicting the response?

Some important questions

1. Is at least one of the predictors $X_{1}, X_{2}, \ldots, X_{p}$ useful in predicting the response?
2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?

Some important questions

1. Is at least one of the predictors $X_{1}, X_{2}, \ldots, X_{p}$ useful in predicting the response?
2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
3. How well does the model fit the data?

Some important questions

1. Is at least one of the predictors $X_{1}, X_{2}, \ldots, X_{p}$ useful in predicting the response?
2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
3. How well does the model fit the data?
4. Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Is at least one predictor useful?

For the first question, we can use the F-statistic

$$
F=\frac{(\mathrm{TSS}-\mathrm{RSS}) / p}{\operatorname{RSS} /(n-p-1)} \sim F_{p, n-p-1}
$$

Quantity	Value
Residual Standard Error	1.69
R^{2}	0.897
F-statistic	570

