Lower bounds.

- 1. Is there a parameterized reduction from Vertex Cover to Independent Set?
- 2. In the Multicolored Biclique problem the input consists of a bipartite graph G with bipartition classes A, B, an integer k, a partition of A into k sets A_1, A_2, \ldots, A_k , and a partition of B into k sets B_1, B_2, \ldots, B_k , the question is whether there exists a subgraph of G isomorphic to the biclique $K_{k,k}$, with one vertex in each of the sets A_i and B_i . Prove that Multicolored Biclique is W[1]-hard.
- 3. Given a graph G and an integer k, the Induced Matching problem asks for an induced matching of size k, that is, k edges x_1y_1, \ldots, x_ky_k such that the 2k endpoints are all distinct and there is no edge between $\{x_i, y_i\}$ and $\{x_j, y_j\}$ for any $i \neq j$. Prove that Induced Matching is W[1]-complete.
- 4. In the Long Induced Path problem the input consists of a graph G and an integer k, and the question is whether G contains the path on kvertices as an induced subgraph. Prove that this problem is W[1]-hard when parameterized by k.
- 5. Given a graph G and an integer k, the Independent Dominating Set problem asks for a set of exactly k vertices that is both an independent set and a dominating set. Prove that Independent Dominating Set is W[2]-complete.

Lower bounds.

- 1. Is there a parameterized reduction from Vertex Cover to Independent Set?
- 2. In the Multicolored Biclique problem the input consists of a bipartite graph G with bipartition classes A, B, an integer k, a partition of A into k sets A_1, A_2, \ldots, A_k , and a partition of B into k sets B_1, B_2, \ldots, B_k , the question is whether there exists a subgraph of G isomorphic to the biclique $K_{k,k}$, with one vertex in each of the sets A_i and B_i . Prove that Multicolored Biclique is W[1]-hard.
- 3. Given a graph G and an integer k, the Induced Matching problem asks for an induced matching of size k, that is, k edges x_1y_1, \ldots, x_ky_k such that the 2k endpoints are all distinct and there is no edge between $\{x_i, y_i\}$ and $\{x_j, y_j\}$ for any $i \neq j$. Prove that Induced Matching is W[1]-complete.
- 4. In the Long Induced Path problem the input consists of a graph G and an integer k, and the question is whether G contains the path on kvertices as an induced subgraph. Prove that this problem is W[1]-hard when parameterized by k.
- 5. Given a graph G and an integer k, the Independent Dominating Set problem asks for a set of exactly k vertices that is both an independent set and a dominating set. Prove that Independent Dominating Set is W[2]-complete.