Индивидуальный подбор весов в ансамбле алгоритмов автоматического машинного обучения

Малышева Александра

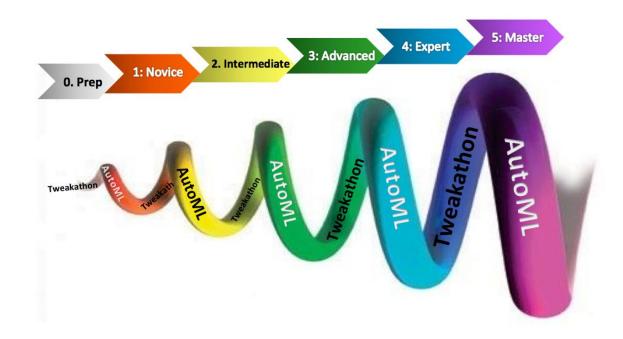
Научный руководитель: Алексей Шпильман

Актуальность

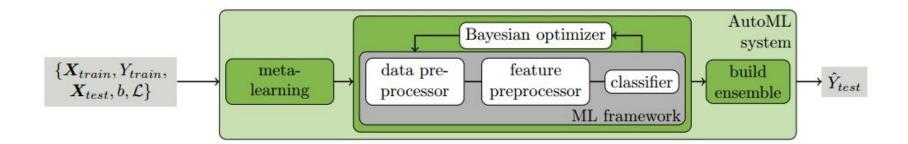
name	#.	категориальные	численные	name	#.	категориальные	численные
AdaBoost (AB)	4 1 (-) 3 (-) extreml. rand. trees pre		5	2 (-)	3 (-)		
Bernoulli naïve Bayes	2	1 (-)	1 (-)	fast ICA	4	3 (-)	1 (1)
		100 PM		feature agglomeration	4	3 ()	1 (-)
decision tree (DT)	4	1 (-)	3 (-)	kernel PCA	5	1 (-)	4(3)
extreml. rand. trees	5	2 (-)	3 (-)	rand. kitchen sinks		-	2 (-)
Gaussian naïve Bayes	-	-	-	linear SVM prepr.	3	1 (-)	2 (-)
gradient boosting (GB)	6	-	6 (-)	no preprocessing	-	-	= 0
kNN	3	2 (-)	1 (-)	nystroem sampler	5	1 (-)	4(3)
LDA	4	1 (-)	3(1)	PCA	2	1 (-)	1 (-)
linear SVM		(* B	31 5	polynomial	3	2 (-)	1 (-)
	4	2 (-)	2 (-)	random trees embed.	4		4 (-)
kernel SVM	7	2 (-)	5 (2)	select percentile	2	1 (-)	1 (-)
multinomial naïve Bayes	2	1 (-)	1 (-)	select rates	3	2 (-)	1 (-)
passive aggressive	3	1 (-)	2 (-)	and hat anadina	2	1 ()	1 (1)
QDA	2	-	2 (-)	one-hot encoding	2	1 (-)	1 (1)
random forest (RF)	5	2 (-)	3 (-)	imputation	1	1 (-)	-
				balancing	1	1 (-)	-
Linear Class. (SGD)	10	0 4 (-) 6 (3) rescaling		1	1 (-)	_	

Классификаторы

Препроцессинг

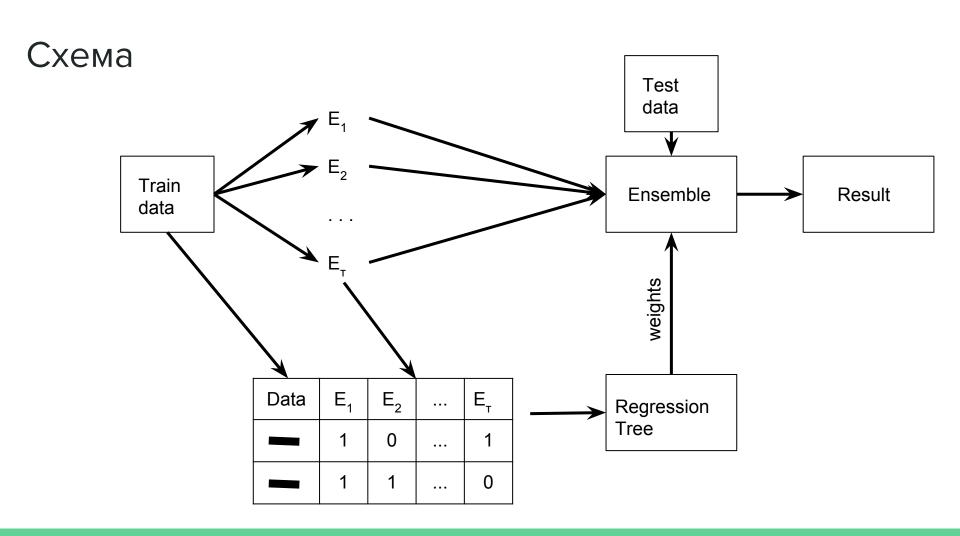

Существующие библиотеки

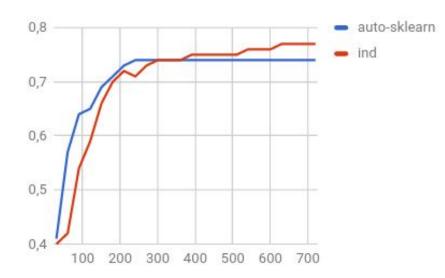
Spark Machine learning library

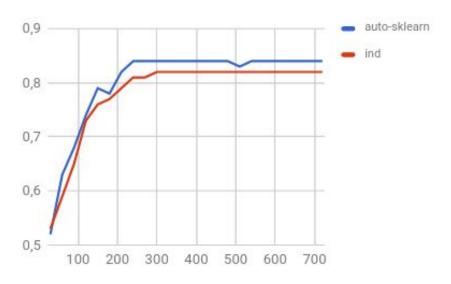

Auto-sklearn

Auto-WEKA

Auto-Net

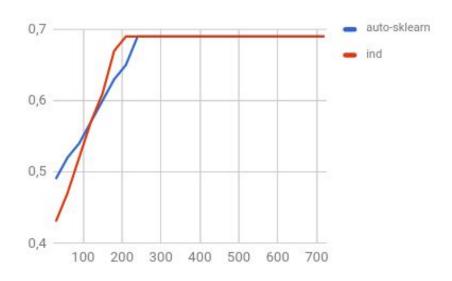

Auto-sklearn

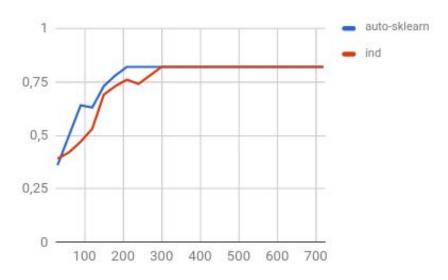

Постановка задачи


 Реализовать алгоритм индивидуального подбора весов в ансамбле алгоритмов автоматического машинного обучения

 Провести сравнение с уже имеющейся библиотекой автоматического машинного обучения на разных данных

Результаты





Ionosphere Data Set

Contraceptive Method Choice Data Set

Результаты

Breast Cancer Data Set

Hepatitis Data Set

Результаты

-						i i	
	# classes	# attributes	# samples	auto-sklearn 120	ind 120	auto-sklearn	ind
Ionosphere	2	34	351	0,65	0,59	0,74	0,77
Cylinder Bands	2	39	512	0,69	0,57	0,87	0,89
Lung Cancer	4	56	32	0,82	0,73	0,82	0,82
Hayes-Roth	3	5	160	0,79	0,58	0,81	0,81
Hepatitis	9	19	155	0,63	0,53	0,82	0,82
Breast Cancer	2	24	286	0,57	0,58	0,69	0,69
Flags	8	30	194	0,48	0,48	0,89	0,89
Glass Identification	7	10	214	0,67	0,68	0,81	0,81
Dermatology	6	38	366	0,56	0,53	0,64	0,64
		•					
Credit Approval	2	15	690	0,64	0,46	0,87	0,86
Contraceptive Method							
Choice	5	19	1473	0,74	0,73	0,84	0,82
Heart Disease	2	19	303	0,64	0,48	0,89	0,87
		•	•	·		•	

Планы

• Обработка численных предсказаний классификатора

• Векторизация алгоритмов

• Оптимизация алгоритмов