
Cranberries

Machine Learning models serving system

Samsung Seoul R&D Center

Presenter: Egor Suvorov

THE PROBLEM

What is Machine Learning about

 Method of solving hard problems without

explicitly specifying the algorithm

 Model is a highly configurable algorithm

 Model can be trained on some set of data

 Trained model is typically served to end users

 Think of trained model as of an algorithm

Example problem: ImageNet

 Popular database with ~15’000’000 images

 Images are labeled, sometimes ambiguous

“Inception v3” model

 Model by Google which “solves” ImageNet

 Implemented using TensorFlow

 25 millions of adjustable parameters

 5 billions operations per one prediction

Technical challenges

 Training

 Very computationally expensive

 Takes long time

 Optimized for throughput

 Serving

 Computationally expensive

 Optimized for latency per one request

 Not so well-learned, not much best practices

THE PROJECT

Goals: functionality, architecture

 Trained ML models web services

 Scale horizontally, serve models of any size,

serve independent “services”

 Re-use existing popular open-source solutions:

 Expensive computations (e.g. SciPy, TensorFlow)

 Model storage format

 Operations (e.g. Docker, Graphite, Zookeeper)

 Low coupling between components

Basis: TensorFlow Serving

 Introduced by Google in February 2016

 C++ framework for serving ML models

 Supports TensorFlow models out-of-the-box

 Has APIs to add other types of models

 Implements Google’s best practices for serving

 Mini-batching, loading policies, computation reuse

 Sample gRPC server is provided

 No load balancing out-of-the-box

Architectural choices

 Multiple decoupled services

 Load balancer, front-end, administration ui

 Coordination is done via shared storage

 Direction communications employ gRPC

 Do not reinvent operational solutions:

 Apache Zookeeper for shared storage

 Graphite for monitoring

 Docker and Docker Compose for containers

Implementation plans

 Implement a single component

 And transfer ownership to teammate

 Make stubs for other components for demo

Implemented and not

 Model loader

 Loads subset of models on a specific server

 Reports status of models

 Unit and simple integration tests

 Handles some connectivity failures

 Can be improved

 More connectivity failures handling

 Fuller integration tests

Internship summary

 Challenges

 Not much success stories in public

 Implementation of model loader is highly tied to

TensorFlow Serving

 New skills

 Learned about ML serving systems

 Designed a new one and presented to colleagues

 https://github.com/kimbyungsang/cranberries/

