
Cranberries 

Machine Learning models serving system 

 

Samsung Seoul R&D Center 

Presenter: Egor Suvorov 

 



THE PROBLEM 



What is Machine Learning about 

 Method of solving hard problems without 

explicitly specifying the algorithm 

 Model is a highly configurable algorithm 

 Model can be trained on some set of data 

 Trained model is typically served to end users 

 Think of trained model as of an algorithm 



Example problem: ImageNet 

 Popular database with ~15’000’000 images 

 Images are labeled, sometimes ambiguous 



“Inception v3” model 

 Model by Google which “solves” ImageNet 

 Implemented using TensorFlow 

 25 millions of adjustable parameters 

 5 billions operations per one prediction 

 

 



Technical challenges 

 Training 

 Very computationally expensive 

 Takes long time 

 Optimized for throughput 

 Serving 

 Computationally expensive 

 Optimized for latency per one request 

 Not so well-learned, not much best practices 

 



THE PROJECT 



Goals: functionality, architecture 

 Trained ML models  web services 

 Scale horizontally, serve models of any size, 

serve independent “services” 

 Re-use existing popular open-source solutions: 

 Expensive computations (e.g. SciPy, TensorFlow) 

 Model storage format 

 Operations (e.g. Docker, Graphite, Zookeeper) 

 Low coupling between components 

 



Basis: TensorFlow Serving 

 Introduced by Google in February 2016 

 C++ framework for serving ML models 

 Supports TensorFlow models out-of-the-box 

 Has APIs to add other types of models 

 Implements Google’s best practices for serving 

 Mini-batching, loading policies, computation reuse 

 Sample gRPC server is provided 

 No load balancing out-of-the-box 



Architectural choices 

 Multiple decoupled services 

 Load balancer, front-end, administration ui 

 Coordination is done via shared storage 

 Direction communications employ gRPC 

 Do not reinvent operational solutions: 

 Apache Zookeeper for shared storage 

 Graphite for monitoring 

 Docker and Docker Compose for containers 

 





Implementation plans 

 Implement a single component 

 And transfer ownership to teammate 

 Make stubs for other components for demo 

 



Implemented and not 

 Model loader 

 Loads subset of models on a specific server 

 Reports status of models 

 Unit and simple integration tests 

 Handles some connectivity failures 

 Can be improved 

 More connectivity failures handling 

 Fuller integration tests 

 

 

 



Internship summary 

 Challenges 

 Not much success stories in public 

 Implementation of model loader is highly tied to 

TensorFlow Serving 

 New skills 

 Learned about ML serving systems 

 Designed a new one and presented to colleagues 

 https://github.com/kimbyungsang/cranberries/ 


