

Cranberries

Machine Learning models serving system

Samsung Seoul R&D Center

Presenter: Egor Suvorov

THE PROBLEM

What is Machine Learning about

- Method of solving hard problems without explicitly specifying the algorithm
- □ *Model* is a highly configurable algorithm
- □ Model can be *trained* on some set of data
- □ Trained model is typically *served* to end users
- □ Think of trained model as of an algorithm

Example problem: ImageNet

- □ Popular database with ~15'000'000 images
- □ Images are labeled, sometimes ambiguous

"Inception v3" model

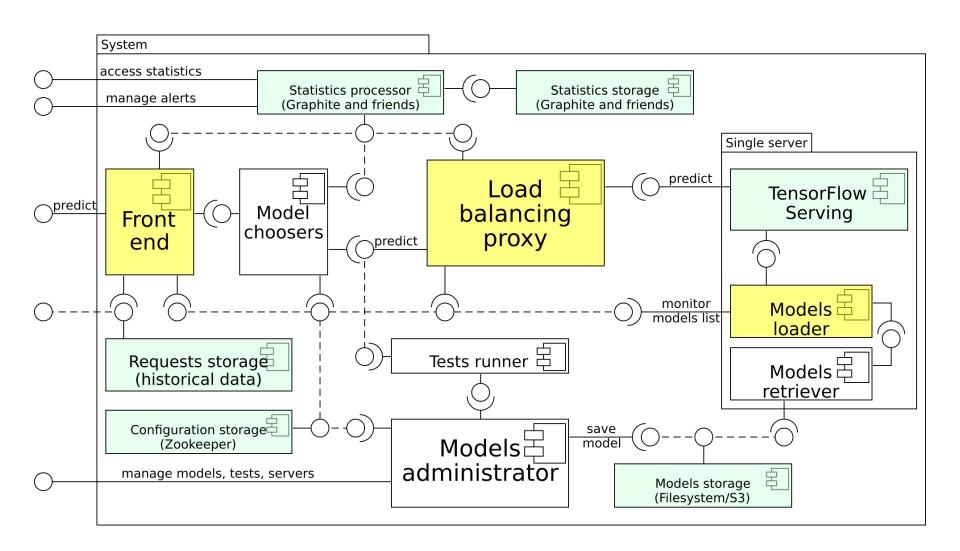
- □ Model by Google which "solves" ImageNet
 - Implemented using TensorFlow
- □ 25 millions of adjustable parameters
- □ 5 billions operations per one prediction

Technical challenges

- □ Training
 - Very computationally expensive
 - Takes long time
 - Optimized for throughput
- □ Serving
 - Computationally expensive
 - Optimized for latency per one request
 - Not so well-learned, not much best practices

THE PROJECT

Goals: functionality, architecture


- \square Trained ML models \rightarrow web services
- □ Scale horizontally, serve models of any size, serve independent "services"
- □ Re-use existing popular open-source solutions:
 - Expensive computations (e.g. SciPy, TensorFlow)
 - Model storage format
 - Operations (e.g. Docker, Graphite, Zookeeper)
- □ Low coupling between components

Basis: TensorFlow Serving

- □ Introduced by Google in February 2016
- □ C++ framework for serving ML models
 - Supports TensorFlow models out-of-the-box
 - Has APIs to add other types of models
 - Implements Google's best practices for serving
 - □ Mini-batching, loading policies, computation reuse
- □ Sample gRPC server is provided
- □ No load balancing out-of-the-box

Architectural choices

- □ Multiple decoupled services
 - Load balancer, front-end, administration ui
- Coordination is done via shared storage
- Direction communications employ gRPC
- □ Do not reinvent operational solutions:
 - Apache Zookeeper for shared storage
 - Graphite for monitoring
 - Docker and Docker Compose for containers

Implementation plans

- □ Implement a single component
 - And transfer ownership to teammate
- Make stubs for other components for demo

Implemented and not

- □ Model loader
 - Loads subset of models on a specific server
 - Reports status of models
 - Unit and simple integration tests
 - Handles some connectivity failures
- □ Can be improved
 - More connectivity failures handling
 - Fuller integration tests

Internship summary

- □ Challenges
 - Not much success stories in public
 - Implementation of model loader is highly tied to TensorFlow Serving
- □ New skills
 - Learned about ML serving systems
 - Designed a new one and presented to colleagues
- □ https://github.com/kimbyungsang/cranberries/