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Query processing
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O: Original
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C: Spelling corrected
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First-phase ranking

Conjunctive mode (AND)

Document-at-a-time

A score is usually computed as a linear combination of
query-dependent and query-independent scores
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Second-phase ranking

Discussed during the last lecture (mainly LTR).
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Spell checking

62 Related tasks

informtionretreval

all          images          videos          shopping          news          more          search tools

about 17 results

Did you mean: information retrieval

Figure 8.2: An example of a query correction for “informtionretreval”.

Enterprise1 and MySQL.2

8.3 Query correction

Query correction, or query spelling correction, is another topic that is closely
related to query auto completion. This is functionality that is meant to auto-
matically correct potentially misspelled queries. Figure 8.2 shows an example
of a search engine providing a corrected query corresponding to a user’s orig-
inal input which may be spelled incorrectly. The incorrectly spelled query is
“informtionretreval”; the search engine’s response is “Did you mean: infor-
mation retrieval” but the results that it returns are matches for the original
incorrectly spelled query rather than for “information retrieval.”

Automatic query spelling correction may help the search engine’s under-
standing of the user’s correct search intents; it can therefore improve retrieval
effectiveness [Ruch, 2002] as well as user’s satisfaction of search experi-
ence [Li et al., 2012]. So far, a remarkable number of methods have been
proposed to query spelling correction, mainly collecting correct queries from
pre-trained word or query pairs based on large text collections [Gao et al.,
2010, Suzuki and Gao, 2012] or query logs [Gao et al., 2010, Sun et al.,
2010]. For instance, Li et al. [2012] propose a generalized query spelling
correction approach based on a Hidden Markov Model with discriminative
training, which cannot only handle spelling errors, e.g., splitting and concate-
nation errors, but can also evaluate candidate corrections so as to guarantee
an optimal correction. Similarly, Duan et al. [2012] introduce a discriminative
model for query spelling correction that directly optimizes the search stage

1https://enterprise.google.com/
2https://www.mysql.com

F. Cai and M. de Rijke, “A Survey of Query Auto Completion in Information Retrieval”
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Simple typos

extenssions −→ extensions (insertion error)

poiner −→ pointer (deletion error)

marshmellow −→ marshmallow (substitution error)

brimingham −→ birmingham (transposition error)

Use an edit distance, e.g., Damerau-Levenshtein distance

Consider only words that. . .

start with the same letter

are of the same or similar length
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k-gram index optimization

Online edition (c)�2009 Cambridge UP

3.3 Spelling correction 61

rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

! Figure 3.7 Matching at least two of the three 2-grams in the query bord.

quently, we require more nuanced measures of the overlap in k-grams be-
tween a vocabulary term and q. The linear scan intersection can be adapted
when the measure of overlap is the Jaccard coefficient for measuring the over-JACCARD COEFFICIENT

lap between two sets A and B, defined to be |A∩ B|/|A∪ B|. The two sets we
consider are the set of k-grams in the query q, and the set of k-grams in a vo-
cabulary term. As the scan proceeds, we proceed from one vocabulary term
t to the next, computing on the fly the Jaccard coefficient between q and t. If
the coefficient exceeds a preset threshold, we add t to the output; if not, we
move on to the next term in the postings. To compute the Jaccard coefficient,
we need the set of k-grams in q and t.

Since we are scanning the postings for all k-grams in q, we immediately
have these k-grams on hand. What about the k-grams of t? In principle,
we could enumerate these on the fly from t; in practice this is not only slow
but potentially infeasible since, in all likelihood, the postings entries them-
selves do not contain the complete string t but rather some encoding of t. The
crucial observation is that to compute the Jaccard coefficient, we only need
the length of the string t. To see this, recall the example of Figure 3.7 and
consider the point when the postings scan for query q = bord reaches term
t = boardroom. We know that two bigrams match. If the postings stored the
(pre-computed) number of bigrams in boardroom (namely, 8), we have all the
information we require to compute the Jaccard coefficient to be 2/(8 + 3− 2);
the numerator is obtained from the number of postings hits (2, from bo and
rd) while the denominator is the sum of the number of bigrams in bord and
boardroom, less the number of postings hits.

We could replace the Jaccard coefficient by other measures that allow ef-
ficient on the fly computation during postings scans. How do we use these

1 Consider the misspelled word “bord”

2 In one pass, find all words that contain at least two bi-grams
of “bord”: aboard, boardroom, border

3 For each candidate, calculate the Jaccard coefficient
|A ∩ B|/|A ∪ B|

4 For “boardroom” it is 2/(8 + 3− 2)

5 All required numbers can be obtained efficiently

Manning et al., “Introduction to Information Retrieval”
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Soundex code

1 Keep the first letter (in uppercase)

2 Replace these letters with hyphens: a, e, o, i, u, y, h, w
3 Replace the other letters by numbers as follows

1 b, f, p, v
2 c, g, j, k, q, s, x, z
3 d, t
4 l
5 m, n
6 r

4 Delete adjacent repeats of a number

5 Delete the hyphens

6 Keep the first three numbers or pad our with zeros

Ilya Markov i.markov@uva.nl Information Retrieval 17
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Soundex code example

extenssions −→ E235; extensions −→ E235

poiner −→ M625; pointer −→ M625

marshmellow −→ B655; marshmallow −→ B655

brimingham −→ P560; birmingham −→ P536
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Noisy channel model

1 A person chooses a word w to output (i.e., write),
based on a probability distribution P(w)

2 The person tries to write the word w

3 The noisy channel (e.g., the person’s brain) causes the person
to output the word e with probability P(e | w)

Ilya Markov i.markov@uva.nl Information Retrieval 20
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Dealing with multiple corrections

Rank corrections by P(w | e)

P(w | e) =
P(e | w)P(w)

P(e)
∝ P(e | w)P(w)

P(w) is the probability of the word w in a collection

P(w) =
tf (w)∑

wi∈C tf (wi )

P(e | w) can be estimated in different ways, e.g., by assigning
the same probability to errors with the same edit distance

Ilya Markov i.markov@uva.nl Information Retrieval 21
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Considering context

Rank corrections by P(e | w)P̂(w)

Where P̂(w) = λP(w) + (1− λ)P(w | wp)

Example: “fish tink”

Possible corrections “think”, “tank”
P(tank | fish) > P(think | fish)
Correct as “fish tank”

Ilya Markov i.markov@uva.nl Information Retrieval 23
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Spell checking summary

Simple typos

Edit distance
k-gram index optimization

Homophones

Soundex code

Multiple corrections

Noisy channel model

Considering context
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Thesauri

Controlled vocabulary with canonical terms

Manual thesauri, e.g., WordNet

Automatically derived thesauri
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Term association measures

Dice’s coefficient
2 · nab
na + nb

∝ nab
na + nb

Mutual information

log
P(a, b)

P(a)P(b)
= logN · nab

na · nb
∝ nab

na · nb

Expected mutual information

P(a, b) log
P(a, b)

P(a)P(b)
=

nab
N
· logN · nab

na · nb
∝ nab · logN · nab

na · nb

Pearson’s χ2

(nab − N · P(a) · P(b))2

N · P(a) · P(b)
=

(
nab − N · naN · nbN

)2

N · naN · nbN
∝
(
nab − 1

N · na · nb
)2

na · nb

Ilya Markov i.markov@uva.nl Information Retrieval 28
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Term association example

χ2

χ2

Croft et al., “Search Engines, Information Retrieval in Practice”
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Thesauri discussion

Pros: does not need user input

Cons: expands each term separately
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Relevance feedback

1 The user issues a (short, simple) query

2 The system returns an initial set of retrieval results

3 Some returned results are identified as relevant or
non-relevant

4 The system computes a better representation of the
information need based on this feedback

5 The system displays a revised set of retrieval results

Ilya Markov i.markov@uva.nl Information Retrieval 32
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Types of feedback

1 Relevance feedback

Users explicitly mark relevant and non-relevant results

2 Pseudo-relevance feedback

The top-k results are assumed to be relevant

3 Implicit relevance feedback

Relevant and non-relevant results are identified
based on user behavior
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Relevance feedback example
1. Badmans Tropical Fish

A freshwater aquarium page covering all aspects of the tropical fish hobby. ... to 
Badman's Tropical Fish. ... world of aquariology with Badman's Tropical Fish. ... 

2. Tropical Fish
Notes on a few species and a gallery of photos of African cichlids. 

3. The Tropical Tank Homepage - Tropical Fish and Aquariums

Info on tropical fish and tropical aquariums, large fish species index with ... Here you 
will find lots of information on Tropical Fish and Aquariums. ... 

4. Tropical Fish Centre

Offers a range of aquarium products, advice on choosing species, feeding, and health 
care, and a discussion board. 

5. Tropical fish - Wikipedia, the free encyclopedia

Tropical fish are popular aquarium fish , due to their often bright coloration. ... Practical 
Fishkeeping • Tropical Fish Hobbyist • Koi. Aquarium related companies: ... 

6. Tropical Fish Find

Home page for Tropical Fish Internet Directory ... stores, forums, clubs, fish facts, 
tropical fish compatibility and aquarium ... 

7. Breeding tropical fish

... intrested in keeping and/or breeding Tropical, Marine, Pond and Coldwater fish. ... 
Breeding Tropical Fish ... breeding tropical, marine, coldwater & pond fish. ... 

8. FishLore

Includes tropical freshwater aquarium how-to guides, FAQs, fish profiles, articles, and 
forums. 

9. Cathy's Tropical Fish Keeping

Information on setting up and maintaining a successful freshwater aquarium. 

10.Tropical Fish Place

Tropical Fish information for your freshwater fish tank ... great amount of information 
about a great hobby, a freshwater tropical fish tank. ... 

Pseudo-relevance feedback
tropical (26), fish (28),

aquarium (8), freshwater

(5), breeding (4),

information (3), species

(3)

(Implicit) relevance feedback
breeding (4), fish (4),

tropical (4), marine (2),

pond (2), coldwater (2)

Croft et al., “Search Engines, Information Retrieval in Practice”
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Using query-log

Find associated terms in user queries

Short pieces of text are easier to analyze

Example for “tropical fish”

stores, pictures, live, sale, types, clipart,

blue, freshwater, aquarium, supplies

Ilya Markov i.markov@uva.nl Information Retrieval 36
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Query expansion summary

Thesauri and term association measures

Relevance and pseudo-relevance feedback

Using query-log
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How you divide your time as an academic

60% Research
40% Teaching

100% Total
∼40hr week

60% Research
40% Teaching
50% Funding

150% Total
∼60hr week

60% Research
40% Teaching
50% Funding
50% Valorization

200% Total
∼80hr week

Ilya Markov i.markov@uva.nl Information Retrieval 39
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Academic activities

1 Research

Scientific papers
Surveys and books
Text books
Supervision

2 Teaching

Courses
Tutorials
Text books
Curriculum
Supervision

4 Funding and valorization

Grant proposals
Contacts with organizations and
companies
Start-ups
PR activities

5 Community services

Organizing conferences and schools
Organizing local events
Program committees, editing

6 Administration

Managing people
Contacts with organizations and
companies
Administration within
group/department/uni

Ilya Markov i.markov@uva.nl Information Retrieval 40
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Query suggestion

58 Related tasks

amsterdam free university
amsterdam open university
amsterdam van university
amsterdam vu university medical center

amsterdam university

Figure 8.1: An example of query suggestions for the query “amsterdam univer-
sity.”

The main purpose of the query suggestion functionality is to enable the user
to formulate a good query and thus submit a related query when they find it
difficult to express their information need. We differentiate query auto com-
pletion from query suggestion in Table 8.1: for QAC we tend to follow a

Table 8.1: Query auto completion vs. query suggestion

Task Input Output

Query auto completion Prefix p Query set Q = {qo : qo starts with p}
Query suggestion Query q Query set Q = {qo : qo is relevant to p}

strict matching policy while for query suggestions we do not. Accordingly, in
QAC we rank a limited number of query completions and allow the user to
complete their query before it has been fully entered without modifying their
previously entered input. In contrast, query suggestions are semantically re-
lated to the user’s input query; the problem of ranking a large number of query
suggestions is challenging [Cai et al., 2016a]. In addition, query completions
are often shown while the user is entering a query in a special purpose drop-
down menu; in contrast, query suggestions are often presented after a query
has been submitted and are then displayed on the search engine result page.

Typical baseline approaches to the query suggestion problem include
search result-based query suggestion [Yang et al., 2008] and query log-based
query suggestions [Baeza-Yates et al., 2004, Anagnostopoulos et al., 2010,
Strizhevskaya et al., 2012], where user behavior such as querying and click-
ing is taken into account. For instance, Cao et al. [2008] propose a context-
aware query suggestion approach by mining clickthrough and session data,

F. Cai and M. de Rijke, “A Survey of Query Auto Completion in Information Retrieval”
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Query suggestion

Similar to query expansion

In practice, mainly based on query-logs

Session-based query suggestion
Click-through-based query suggestion
It is always useful to add some sort of query similarity
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Outline

5 Query suggestion
Session-based query suggestion
Click-through-based query suggestion
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Adjacency and co-occurrence

Adjacency in the same search session P(q → s)

Co-occurrence in the same search session P(q, s)

Ilya Markov i.markov@uva.nl Information Retrieval 45
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Random walk on query flow graph

Start with the initial query

Perform a random walk with the
transition probabilities w(i , j)

Suggest queries based on the
posterior probabilities

Picture taken from http://www.slideshare.net/ChaToX/agei

Ilya Markov i.markov@uva.nl Information Retrieval 46
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Clustering

1 Cluster queries based on clicked URLs

2 Suggest queries from the same cluster

Ilya Markov i.markov@uva.nl Information Retrieval 48
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Random walk on co-clicked bipartite graph

Given a query, construct a
subgraph with n queries using
depth-first search

Perform a random walk on this
subgraph

pij =
∑

k∈V2

w(i , k)

Zi

w(k , j)

Zj

For each query accumulate time

hi (t + 1) =
∑

j

pijhj(t)

Suggest queries with the smallest
final time

This linear system has a unique solution. This fact can be
elegantly verified by using Maximum Principle and Unique-
ness Principle in the discrete potential theory.

3. SUGGESTION USING HITTING TIME
Based on the formal definition of hitting time, we now pro-

pose our algorithm of query suggestion using hitting time.

3.1 The Algorithm
Let us begin with a query log dataset, from each record of

which we can extract a pair ⟨Query, URL⟩. By summarizing
all such pairs, we can construct a bipartite graph G = ⟨V, E⟩,
where V = V1 ∪ V2. Clearly, V1 corresponds to all queries,
and V2 corresponds to all URLs. Each edge e = (i, j) ∈ E
corresponds to a pair ⟨Qi, Uj⟩ with positive frequency. We
weight each edge with w(i, j) = C(Qi, Uj), which is the
number of records where this pair appears.

There are also other variations to this setup, e.g., by nor-
malizing the edge weights, constructing a k-Nearest-Neighbor
graph, or using a Query-Query graph, Query-IP graph, etc.
In this section, we use the undirected Query-URL bipartite
graph as a representative case to illustrate our algorithm. A
simple example of such a graph is shown in Figure 1.

T
aa

american airline

mexiana

www.aa.com

www.theaa.com/travelwatch/planner_main.jsp

en.wikipedia.org/wiki/Mexicana

300

15

Query Url

Figure 1: Example of an undirected Query-URL bi-
partite graph

From Figure 1, we see that every query is connected with
a number of URLs, on which the users clicked when sub-
mitting this query to the search engine. The weights on the
edges present how many times the users used this query to
access this URL. Please note that there is no edge connect-
ing two queries, or two URLs.

The labeled query indicates the query for which we want
to generate suggestions. Intuitively, if for all URLs that we
use a query to access, other people exclusively use another
query to access, that query is a good suggestion to the orig-
inal query, e.g., “american airline” to “aa” in Figure 1.

Let QT be the original (target) query. In principle, we
can set A = {QT } and compute the Hitting time hA(i) for
all other queries Qi based on this graph, use this measure
to rank Qis, and select the top-k queries as suggestions to
QT . However, there are two concerns for using the straight-
forward and formal solution we presented in Section 2.

• The graph G can be too large (e.g., 500M queries and
URLs). In fact, most vertices are irrelevant to the orig-
inal query, but they increase the computational cost.

• Solving the linear system can be time consuming. When
the number of variables of the linear system is millions,

it becomes extremely inefficient to get an exact solu-
tion to that linear system.

To overcome these two concerns, we propose the following
efficient algorithm for query suggestion using hitting time:

Algorithm 1 Query Suggestion Using Hitting Time

A bipartite graph G = (V1 ∪ V2, E) consists of query set V1

and URL set V2. There is an edge in E from a query i to an
URL k if this URL is clicked, and the edge is weighted by
the click frequency w(i, k).

1. Given a query s in V1, a subgraph is constructed by us-
ing depth-first search in G. The search stops when the
number of queries is larger than a predefined number
of n queries.

2. Form a random walk on the subgraph by defining tran-
sition probabilities between two queries i and j in V1

as

pij =
∑

k∈V2

w(i, k)

di

w(k, j)

dk
.

3. For all queries except the given one, iterate

hi(t + 1) =
∑

j ̸=s

pijhj(t) + 1

for a predefined number of m iterations started with
hi(0) = 0.

4. Let h∗
i be the final value of hi(t). Output the queries

which have the top k smallest h∗
i as suggestions.

A good selection of k would control that the ranking of
top k queries stays stable in future iterations. In Section 4,
we will show that k does not need to be large, which ensures
the efficiency of this algorithm. In some scenarios, a different
initialization of W can be used. For example, one can use
mutual information of a query and a URL instead of the
clickthrough frequency to initialize wij . One can also use
a weighting schema such that wij ̸= wji, which naturally
generalizes this method to directed graphes.

Please note that since we are interested in query sugges-
tions, we fold the bipartite graph into a general graph in the
algorithm above. In general, we can easily unfold the graph

in the algorithm, by setting pij = w(i,j)
di

.

3.2 Personalized Query Suggestion
Personalization is desirable for many scenarios where dif-

ferent user has different information need. People in New
York are likely to use “msg” to access the sports center, thus
a suggestion like “madison square garden” is quite useful.
People in other states, on the other hand, may use “msg” to
access the food additive, and a suggestion like “Monosodium
glutamate” is desirable.

There has been quite a few work on personalized search
[11]. However, how to generate personalized query sugges-
tion is still an unsolved problem. [8] presents automatical
query completion with local information, but that method
is based on query morphology and cannot be applied to gen-
erate personalized semantic suggestions.

We now present that our method using hitting time on bi-
partite graph can be easily adapted to generate personalized

Q. Mei et al., “Query Suggestion Using Hitting Time”
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Query suggestion summary

Session-based query suggestion

Adjacency and co-occurrence
Query flow graph

Click-through-based query suggestion

Co-clicked URLs and clustering
Bipartite graph

It is always useful to add some sort of query similarity
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Query auto-completion
2.1. Problem formulation 9

prefix query 
completions

query log

prefix

user prefix

query
completions

prefix p query q feature fu feature fv

p
1

q
11 f 11 f’11

q
12 f 12 f’12

Index

q
1n f 1n f’1n

… … …

p
k

q
k1 f k1 f’ k1

…

…

Online ranking signals

…

time location behavior

Figure 2.1: A basic QAC framework.

In essence, the QAC problem can be viewed as a ranking problem. Given
a prefix, possible query completions are ranked according to a predefined
criterion, and then some of them are returned to the user. Typically, a pre-
computed auto-completion system is required for generating query comple-
tions corresponding to each specific prefix in advance; it stores the associa-
tions between prefix and query completions in an efficient data structure, such
as prefix-trees, that allows efficient lookups by prefix matching. This index is
similar to an inverted table storing a mapping from query to documents in an
information retrieval system. Figure 2.1 sketches a basic QAC framework. As
users’ queries and interactions can be recorded by search engines, this kind
of data is used for generating an index table offline; it captures the relation-
ships between prefixes and queries. When a user enters a prefix in the search
box, based on a pre-built trie-based index [Kastrinakis and Tzitzikas, 2010,
Hsu and Ottaviano, 2013], a list of query completions is retrieved. Based on
further re-ranking using signals determined at query time, e.g., time, loca-
tion and user behavior, the user will receive a final list of query completions.
In deployed systems, the list of completions returned typically has a limited
length, e.g., at the time of writing, at most 4 for Baidu, 8 for Bing, 4 for
Google, 10 for Yahoo and Yandex.

Next, we introduce the problem of query auto completion more formally.

F. Cai and M. de Rijke, “A Survey of Query Auto Completion in Information Retrieval”
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Most popular completion

MPC (p) = argmax
q∈C(p)

f (q)∑
qi∈Q f (qi )

p – prefix

q – query

C (q) – candidate completions

Q – all queries

f (q) – frequency of query q
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Time-sensitive QAC

TS(q, t) = argmax
q∈C(p)

f̂t(q)∑
qi∈Q f̂t(qi )

t – time

f̂t(q) – estimated frequency of query q at time t
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Time-sensitive QAC (cont’d)

f̂t+1 = λ · ft + (1− λ) · f̄t−1

ft – observed frequency at time t

f̄t−1 – smoothed frequency at time t − 1

f̂t = λ · f trendt + (1− λ) · f periodt

f trendt – predicted popularity of query q based on recent trends

f periodt – predicted popularity of query q based on periodicity
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User-centered QAC

UC (q) = λ · sim(q,Qs) + (1− λ) · sim(q,Qu)

sim – some similarity score (e.g., cosine)

Qs – previous user queries in the current session

Qu – all previous user queries
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Query processing summary

Normalization Spelling 
correction

Segmentation
(terms, phrases, URLs, …)

O

Stemming

N N

NS
NCS

NST

NS

NCST

NCS

Term expansion
(synonyms, plurals, …)

NSA
NSTA NCSTA

NCSA

Query rewriting

NC

Annotation
(entity extraction, geotagging, …)

R

O: Original
N: Normalized
C: Spelling corrected
S: Segmented
T: Stemmed
A: Annotated
R: Rewritten

Ilya Markov i.markov@uva.nl Information Retrieval 62



Physical processing Spell checking Query expansion Intermezzo Query suggestion Query auto-completion Summary

Query processing summary

Physical processing
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Query expansion

Query suggestion

Query auto-completion
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More query processing

Analyze syntactical structure

Extract entities

Interpret semantics
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Materials

Croft et al., Chapter 6.2

Manning et al., Chapters 3.3–3.4, 9.2

L. Meng
A Survey on Query Suggestion
International Journal of Hybrid Information Technology, 2014

F. Cai, M. de Rijke
A Survey of Query Auto Completion in Information
Retrieval
Foundations and Trends in Information Retrieval, 2016
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