Домашнее задание №2

1. Установите, существует ли предел последовательности и, если он существует, найдите его: а) (1) $x_n = \frac{3^{n+1}-(-4)^n}{(-3)^n+4^{n+1}};$

a) (1)
$$x_n = \frac{3^{n+1} - (-4)^n}{(-3)^n + 4^{n+1}};$$

6) (1)
$$x_n = \sqrt[3]{n^3 + 2n^2} - n$$
;

B) (1)
$$x_n = \log_{(n^5+3\cos^2(n))}(n^2 + 2\sin^2(n));$$

$$\Gamma$$
) (1) $x_n = \left(1 + \frac{100}{n}\right)^n$;

д) (1)
$$x_n = \left(1 + \frac{1}{n^2}\right)^n$$
.

- **2**. (1) Найти предел $\lim_{n\to+\infty} \operatorname{arcctg}\left(2\frac{n\sqrt{n}-(n+1)\sqrt{n+1}}{\sqrt{9n-2}}\right)$.
- **3**. а) (1) Докажите, что предел последовательности $x_n = \prod_{n=0}^{n} \left(1 \frac{1}{k^2}\right)$ равен $\frac{1}{2}$.
 - б) (2) Докажите, что последовательность $y_n = \prod_{k=1}^n \left(1 + \frac{1}{k^2}\right)$ имеет конечный предел.
- в) (3) Пусть последовательность $\{\sigma_k\}_{k\in\mathbb{N}}$ такова, что $\sigma_k=\pm 1$. Докажите, что последовательность $z_n = \prod_{k=1}^n \left(1 + \frac{\sigma_k}{k^2}\right)$ имеет конечный положительный предел.
- 4. (3) Найдите предел $\lim_{n\to+\infty}\sum_{1\leqslant k\leqslant 2n}2^{-\frac{n\kappa}{n+k}}.$
- **5**. (2) Пусть $x_0 > 0$, $k \in \mathbb{N}$. Найдите предел последовательности x_n , если $x_{n+1} = \frac{k-1}{k} x_n + \frac{1}{x_n^{k-1}}$.
- **6**. Пусть $a_j\geqslant 0,\, 1\leqslant j\leqslant p$. Найдите предел

a) (3)
$$\lim_{n \to +\infty} \left(\frac{a_1^n + a_2^n + \ldots + a_p^n}{n} \right)^{\frac{1}{n}};$$

6) (3)
$$\lim_{n \to -\infty} \left(\frac{a_1^n + a_2^n + \dots + a_p^n}{n} \right)^{\frac{1}{n}}.$$

7. (4) Вывести из теоремы Тёплица теорему Штольца.