Analyzing patterns of co-occurence between metabolomics and metagenomics features of human microbiome

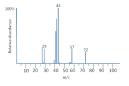
Egor Shcherbin

Saint Petersburg Academic University

20 February 2018

Introduction

Human microbiome, AGP, iHMP


Human microbiome

Metabolomics and metagenomics features

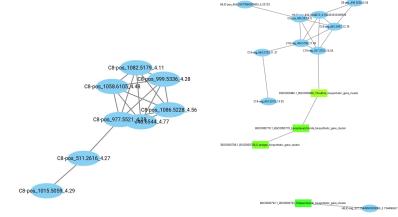
- Metabolomics features
 - ▶ MS1 or MS/MS features clustered using MS-Cluster

- Metagenomics features
 - Operational Taxonomic Units (OTUs)
 - ▶ Biosynthetic Gene Clusters (BGCs)

Problems

- 1. Finding associations between features
 - ▶ Molecular networks (Watrous et. al., 2012)
- 2. Discovering and identifying microbial compounds
 - Dereplicator+ (Mohimani et. al., submitted)
 - ▶ VarQuest (Gurevich et. al, 2018)

Patterns of co-occurence


	Samples															P-value
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Compound X	1	1	0	0	0	0	1	0	0	0	0	0	0	1	1	0.43
OTU A	0	1	1	1	0	0	0	1	0	0	0	1	0	0	0	
Compound X	1	1	0	0	0	0	1	0	0	1	1	0	0	1	1	0.04
оти в	1	0	1	0	0	0	1	0	0	1	0	0	0	1	1	

- ▶ Two features are associated if they have similar patterns of occurence in the samples
- ▶ Use one-tailed Fisher's exact test to evaluate similarity

Pipeline

- Identify the samples in which each MS/OTU/BGC feature is present
- 2. Search for pairs of features with statistically significant similar patterns of co-occurrence
- 3. Construct a network of significant pairs of features
- 4. Simplify the network by keeping top k edges for each node (k=5)
- 5. Extract connected components

Examples

CB-pos_494.3236_5.34

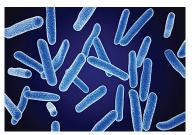
Dataset overview

1. AGP

- 2125 samples
- ▶ 74913 MS/MS features
- ▶ 11265 OTU features
- 7712 significant matches of metabolomics features to OTU features at 1e-10 threshold

2. iHMP

- ▶ 388 samples
- ▶ 59916 MS1 features
- 29846 nodes, 37562 edges (p-value < 1e-10), and 4296 connected components
- ▶ 512 out of 59916 MS1 features annotated by Human Metabolome Database (HMDB). Among them, 152 associated with known and novel metabolites, including carnitine, triglyceride, and cholate.


PQS

Dereplicator+ search of the AGP dataset revealed a list of 68 identified compounds which had at least one significant match with an OTU feature. Particularly,

▶ OTU features from the *Pseudomonas* genus clustered with pseudomonas quinolone signal (PQS) BGC, and several identified compounds including phenazine carboxylic acid $(m/z\ 225.06)$, rhamnolipid $(m/z\ 673.39)$, and 4 compounds annotated as PQS with $m/z\ 258.14$, $m/z\ 260.16$, $m/z\ 270.18$, and $m/z\ 288.19$

F. prausnitzii

- Significant correlations observed between Stercobilin, m/z 595.35, Urobilin, m/z 592.35, and microbial strain Faecalibacterium prausnitzii.
 - ▶ It is well known that Stercobilin and Urobilin are end-products of heme catabolism by colon micro-organisms, but the specific organism responsible for this biotransformation has not been reported previously.

Flaxseed

Moreover, we searched iHMP metabolomics features for masses of two flaxseed orbitides, Cyclolinopeptide A and Cyclolinopeptide E.

- ▶ They were found in a cluster containing 6 other metabolomics features, with m/z 1058.61, m/z 1082.51, m/z 511.26, m/z 999.53, m/z 1015.50, and m/z 1086.52
- ▶ First two, with m/z 1058.61 and m/z 1082.51, are likely to be Cyclolinopeptide B and Cyclolinopeptide H, and other are potentially novel compounds associated with flaxseed
- Molecular networking failed to capture the association between cyclolinopeptides, due to their distinct sequences.

ASMS annual conference 2018

Shcherbin, E., Cao, L., Jarmusch, A. K., Dorrestein, P. C. & Mohimani, H. "Association between metabolomics and metagenomics features of human microbiome revealed by co-occurrence pattern analysis", *abstract submitted*