Bounded search trees

16 February 2018

. In the CLUSTER VERTEX DELETION problem, we are given a graph G
and an integer k, and the task is to delete at most k vertices from G to
obtain a cluster graph (a disjoint union of cliques). Obtain a 3FnOM).
time algorithm for CLUSTER VERTEX DELETION.

. In the CLUSTER EDITING problem, we are given a graph G and an
integer k, and the objective is to check whether we can turn G into a
cluster graph (a disjoint union of cliques) by making at most k edge
editions, where each edition is adding or deleting one edge. Obtain a
3¥n%M_time algorithm for Cluster Editing.

. An undirected graph G is called perfect if for every induced subgraph H
of G, the size of the largest clique in H is same as the chromatic number
of H. In this exercise we consider the ODD CYCLE TRANSVERSAL
problem, restricted to perfect graphs. Construct 3*n°(M-time branching
algorithm.

. Let F' be a set of graphs. We say that a graph G is F-free if G does
not contain any induced subgraph isomorphic to a graph in F'; in
this context the elements of F' are sometimes called forbidden induced
subgraphs. For a fixed set F', consider a problem where, given a graph
G and an integer k, we ask to turn G into a F-free graph by: (vertex
deletion) deleting at most k vertices; (edge deletion) deleting at most
k edges; (completion) adding at most k edges; (edition) performing at
most k editions, where every edition is adding or deleting one edge.
Prove that, if I’ is finite, then for every of the four aforementioned
problems there exists a 2°*)n%M_time FPT algorithm. (Note that the
constants hidden in the O()-notation may depend on the set F.)

. In the VERTEX COVER/OCT problem, we are given an undirected
graph G, an integer ¢, and an odd cycle transversal Z of size at most



k, and the objective is to test whether G has a vertex cover of size at
most (. Show that VERTEX COVER/OCT admits an algorithm with
running time 28poly(n).

. In this exercise we consider FPT algorithms for FEEDBACK ARC SET
IN TOURNAMENTS and FEEDBACK VERTEX SET IN TOURNAMENTS.
Recall that a tournament is a directed graph, where every pair of
vertices is connected by exactly one directed edge (in one of the directions).

(a) Let G be a digraph that can be made into a tournament by adding
at most k£ > 2 directed edges. Show that if G has a cycle then it
has a directed cycle of length at most 3v/k.

(b) Show that FEEDBACK ARC SET IN TOURNAMENTS admits a
branching algorithm with running time (3v/k)*n®®).

(¢) Show that FEEDBACK VERTEX SET IN TOURNAMENTS admits a
branching algorithm with running time 3*poly(n).

(d) Observe that, in the FEEDBACK ARC SET IN TOURNAMENTS
problem, we can equivalently think of reversing an edge instead
of deleting it. Use this observation to show a branching algorithm

for FEEDBACK ARC SET IN TOURNAMENTS with running time
RSO

. A bipartite tournament is an orientation of a complete bipartite graph,
meaning its vertex set is a union of two disjoint sets V; and V5 and
there is exactly one arc between every pair of vertices u and v such
that u € V] and v € V5.

(a) Show that a bipartite tournament has a directed cycle if and only
if it has a directed cycle on 4 vertices.

(b) Show that DIRECTED FEEDBACK VERTEX SET and DIRECTED
FEEDBACK ARC SET admit algorithms with running time 4500
on bipartite tournaments.

. In the MIN-ONES-R-SAT problem, we are given an r-CNF formula ¢
and an integer k, and the objective is to decide whether there exists
a satisfying assignment for ¢ with at most k variables set to true.
Show that MIN-ONES-R-SAT admits an algorithm with running time
f(r; K)n°® for some computable function f.

. In the MIN-2-SAT problem, we are given a 2-CNF formula ¢ and
an integer k£, and the objective is to decide whether there exists an



10.

assignment for ¢ that satisfies at most k clauses. Show that MIN-2-
SAT can be solved in time 2Fn°M.

In the MINIMUM MAXIMAL MATCHING problem, we are given a graph
G and an integer k, and the task is to check if G admits an (inclusion-
wise) maximal matching with at most k edges.

(a) Show that if G has a maximal matching of size at most k, then
V(M) is a vertex cover of size at most 2k.

(b) Let M be a maximal matching in G and let X C V(M) be a
minimal vertex cover in (. Furthermore, let M; be a maximum
matching of G[X] and M, be a maximum matching of G[V(G) \
V(My)]. Show that M; U M, is a maximal matching in G of size
at most |M].

(c) Obtain a 4*n°M)-time algorithm for MINTMUM MAXIMAL MATCHING.



