
Bounded search trees

16 February 2018

1. In the Cluster Vertex Deletion problem, we are given a graph G
and an integer k, and the task is to delete at most k vertices from G to
obtain a cluster graph (a disjoint union of cliques). Obtain a 3knO(1)-
time algorithm for Cluster Vertex Deletion.

2. In the Cluster Editing problem, we are given a graph G and an
integer k, and the objective is to check whether we can turn G into a
cluster graph (a disjoint union of cliques) by making at most k edge
editions, where each edition is adding or deleting one edge. Obtain a
3knO(1)-time algorithm for Cluster Editing.

3. An undirected graph G is called perfect if for every induced subgraphH
of G, the size of the largest clique in H is same as the chromatic number
of H. In this exercise we consider the Odd Cycle Transversal
problem, restricted to perfect graphs. Construct 3knO(1)-time branching
algorithm.

4. Let F be a set of graphs. We say that a graph G is F -free if G does
not contain any induced subgraph isomorphic to a graph in F ; in
this context the elements of F are sometimes called forbidden induced
subgraphs. For a �xed set F , consider a problem where, given a graph
G and an integer k, we ask to turn G into a F -free graph by: (vertex
deletion) deleting at most k vertices; (edge deletion) deleting at most
k edges; (completion) adding at most k edges; (edition) performing at
most k editions, where every edition is adding or deleting one edge.
Prove that, if F is �nite, then for every of the four aforementioned
problems there exists a 2O(k)nO(1)-time FPT algorithm. (Note that the
constants hidden in the O()-notation may depend on the set F .)

5. In the Vertex Cover/OCT problem, we are given an undirected
graph G, an integer `, and an odd cycle transversal Z of size at most

1

k, and the objective is to test whether G has a vertex cover of size at
most `. Show that Vertex Cover/OCT admits an algorithm with
running time 2kpoly(n).

6. In this exercise we consider FPT algorithms for Feedback Arc Set
in Tournaments and Feedback Vertex Set in Tournaments.
Recall that a tournament is a directed graph, where every pair of
vertices is connected by exactly one directed edge (in one of the directions).

(a) Let G be a digraph that can be made into a tournament by adding
at most k ≥ 2 directed edges. Show that if G has a cycle then it
has a directed cycle of length at most 3

√
k.

(b) Show that Feedback Arc Set in Tournaments admits a
branching algorithm with running time (3

√
k)knO(1).

(c) Show that Feedback Vertex Set in Tournaments admits a
branching algorithm with running time 3kpoly(n).

(d) Observe that, in the Feedback Arc Set in Tournaments
problem, we can equivalently think of reversing an edge instead
of deleting it. Use this observation to show a branching algorithm
for Feedback Arc Set in Tournaments with running time
3knO(1).

7. A bipartite tournament is an orientation of a complete bipartite graph,
meaning its vertex set is a union of two disjoint sets V1 and V2 and
there is exactly one arc between every pair of vertices u and v such
that u ∈ V1 and v ∈ V2.

(a) Show that a bipartite tournament has a directed cycle if and only
if it has a directed cycle on 4 vertices.

(b) Show that Directed Feedback Vertex Set and Directed
Feedback Arc Set admit algorithms with running time 4knO(1)

on bipartite tournaments.

8. In the Min-Ones-r-SAT problem, we are given an r-CNF formula φ
and an integer k, and the objective is to decide whether there exists
a satisfying assignment for φ with at most k variables set to true.
Show that Min-Ones-r-SAT admits an algorithm with running time
f(r; k)nO(1) for some computable function f .

9. In the Min-2-SAT problem, we are given a 2-CNF formula φ and
an integer k, and the objective is to decide whether there exists an

2

assignment for φ that satis�es at most k clauses. Show that Min-2-
SAT can be solved in time 2knO(1).

10. In theMinimum Maximal Matching problem, we are given a graph
G and an integer k, and the task is to check if G admits an (inclusion-
wise) maximal matching with at most k edges.

(a) Show that if G has a maximal matching of size at most k, then
V (M) is a vertex cover of size at most 2k.

(b) Let M be a maximal matching in G and let X ⊆ V (M) be a
minimal vertex cover in G. Furthermore, let M1 be a maximum
matching of G[X] and M2 be a maximum matching of G[V (G) \
V (M1)]. Show that M1 ∪M2 is a maximal matching in G of size
at most |M |.

(c) Obtain a 4knO(1)-time algorithm forMinimum Maximal Matching.

3

