Lower bounds(HW).

1. Given a graph G and an integer k, the Independent Dominating Set problem asks for a set of exactly k vertices that is both an independent set and a dominating set. Prove that Independent Dominating Set is $W[2]-c o m p l e t e$.
2. In this exercise we will work out an alternative, purely combinatorial construction of k-paradoxical tournaments(турнир без доминирующего множества размера k) of size $2^{\text {poly(k) }}$.

- Find a 2 -paradoxical tournament T^{*} on 7 vertices.
- Assume we are given some tournament T. Construct a tournament T^{\prime} as follows. The vertices of T^{\prime} are triples of vertices of T, i.e., $V\left(T^{\prime}\right)=V(T) \times V(T) \times V(T)$. Let us consider a pair of triples $u_{1}=\left(a_{1}, b_{1}, c_{1}\right)$ and $u_{2}=\left(a_{2}, b_{2}, c_{2}\right)$, where $a_{1} \neq a 2, b_{1} \neq b_{2}$, and $c_{1} \neq c_{2}$. Consider now pairs $\left\{a_{1}, a_{2}\right\},\left\{b_{1}, b_{2}\right\},\left\{c_{1}, c_{2}\right\}$, and count for how many of them the edge in T was directed from the vertex with subscript 1 to the vertex of subscript 2 (e.g., from a_{1} to a_{2}). If for at least 2 pairs this was the case, we put $\left(u_{1}, u_{2}\right) \in E\left(T^{\prime}\right)$, and otherwise we put $\left(u_{2}, u_{1}\right) \in E\left(T^{\prime}\right)$. For all the pairs of triples where at least one of the coordinates is the same, we put the edge between the triples arbitrarily. Prove that if T was k-paradoxical, then T^{\prime} is $\left\lfloor\frac{3 k}{2}\right\rfloor$-paradoxical.
- Define the sequence $T_{0}, T_{1}, T_{2} \ldots$ as follows: $T_{0}=T *$, and for $m \geq 1$ the tournament T_{m} is constructed from T_{m-1} using the construction from the previous point. Prove that $\left|V\left(T_{m}\right)\right|=7^{3^{m}}$ and that T_{m} is $g(m)$-paradoxical for a function $g(m) \in \Omega\left(\left(\frac{3}{2}\right)^{m}\right)$.
- Using the previous point, provide an algorithm that, given an integer k, constructs a k-paradoxical tournament of size $2^{O\left(k^{\log _{3 / 2}{ }^{3}}\right) \leq} \leq$ $2^{O\left(k^{2.71}\right)}$. The construction should work in time polynomial with respect to the size of the constructed tournament.

3. Given a bipartite graph G with bipartite classes $A, B \subseteq V(G)$ and an integer k, the Hall Set problem asks for a Hall set of size at most k, that is, a set $S \subseteq A$ of size at most k such that $|N(S)|<|S|$. Show that Hall Set is W[1]-hard.
