
Contents

9 Deterministic bottom-up parsing 2
9.1 The basics of Shift–Reduce parsing . 2
9.2 Parsing tables used by LR parsers . 3
9.3 Representation by pushdown automata . 3

9.3.1 Deterministic pushdown automata . 3
9.3.2 Grammars to automata . 3
9.3.3 Automata to grammars . 5

9.5 Input-driven automata and grammars . 5
9.5.1 Input-driven pushdown automata . 5
9.5.2 Nondeterministic input-driven pushdown automata 7
9.5.3 Determinization . 7
9.5.4 Input-driven grammars . 8
9.5.5 Operations on input-driven automata . 9

9.6 Generalized LR parsing . 9
9.6.1 Nondeterminism in LR parsing . 9
9.6.2 Example . 9
9.6.3 Graph-structured stack . 9
9.6.4 The algorithm . 10
9.6.5 Searching in the stack . 11

Bibliography 12

Name index 13

1

Chapter 9

Deterministic bottom-up parsing

9.1 The basics of Shift–Reduce parsing

The deterministic LR(k) parsing method, introduced by Knuth [5], is applicable to a strictly
larger subclass of ordinary grammars than the LL parsing. Like an LL parser, an LR(k) parser
reads the string from left to right using a stack memory. The stack memory is used to represent
a partial parse of the read portion of the input. When the parser is in a configuration (η, v),
where w = uv is the entire input string and η ∈ (Σ ∪N)∗ represents the current stack contents,
this means that the parser has already parsed the earlier part of the input u, and found its
representation as the concatenation η, with u ∈ LG(η).

A deterministic LR parser may use two operations: (i) shifting the next input symbol to the
stack, and (ii) reducing a right-hand side of a rule A → α at the top of the stack to a single
symbol A:

(η, av)
Shift a−−−−→ (ηa, v)

(ηα, v)
Reduce A→ α−−−−−−−−−→ (ηA, v)

In order to decide which operation to apply in a configuration, a deterministic LR parser may
use the next k symbols of the input, where k is fixed, and the entire contents of its stack. The
exact dependence of the action on these data shall be derived and explained in this section; in
the end, the action at each step shall be computed in contant time.

Example 9.1. Grammar for { ancbn | n > 0} ∪ { andb2n | n > 0}:

S → C | D
C → aCb | c
D → aDbb | d

The string aacbb is recognized as follows:

(ε, aacbb)
shift a−−−−→ (a, acbb)

shift a−−−−→ (aa, cbb)
shift c−−−−→ (aac, bb)

reduce C → c−−−−−−−−−→
(aaC, bb)

shift b−−−−→ (aaCb, b)
reduce C → aCb−−−−−−−−−−−→ (aC, b)

shift b−−−−→ (aCb, ε)
reduce C → aCb−−−−−−−−−−−→

(C, ε)
reduce S → C−−−−−−−−−→ (S, ε)

Brief outline: At each step, the parser guesses a path in a possible parse tree, with its stack
contents representing a parse forest to the left of that path. This guess is made by an NFA, which
reads the stack from left (bottom) to right (top) and emits an action in the end. That NFA can
be determinized. The resulting DFA can be executed at each step to compute the action. One
can avoid scanning the entire stack at each step by storing the intermediate states of the DFA
in the stack.

2

Deterministic bottom-up parsing 3

9.2 Parsing tables used by LR parsers

First, a DFA processing the stack from the bottom to the top. For a grammar G =
(Σ, N,R, S), a DFA A = (Σ ∪ N,Q, q0δ). Instead of a set of accepting states, there is an
table of actions performed by the parser after reading the stack up to the top. The action is
determined by the state of the DFA and by the first k symbols of the unread portion of the
input. Action : Q× Σ6k → {Shift} ∪ {Reduce A→ α}A→α∈R

9.3 Representation by pushdown automata

9.3.1 Deterministic pushdown automata

Pushdown automata as a reformulation of ordinary grammars (Chomsky and Schützenberger,
1963). Their deterministic case is important as a model for LR parsers.

Definition 9.1 (Ginsburg and Greibach [4]). A deterministic pushdown automaton (DPDA) is
a septuple A = (Σ, Q,Γ, q0,⊥, δ, F), in which

• Σ is a finite input alphabet,

• Q is a finite set of states,

• Γ is a finite pushdown alphabet,

• q0 ∈ Q is the initial state

• ⊥ ∈ Γ is the bottom pushdown symbol,

• the transition function is δ : Q× (Σ∪{ε})×Γ→ Q×Γ∗, and for each pair of a state q ∈ Q
and a stack symbol s ∈ Γ, either δ(q, ε, s) is not defined, or δ(q, a, s) is undefined for all
a ∈ Σ;

• F ⊆ Q is the set of accepting states.

The configurations of the automaton are triples (q, w, x), where q ∈ Q is the current state,
w ∈ Σ∗ is the remaining input string and γ ∈ Γ∗ represents the pushdown contents. The tran-
sition relation on the set of these configurations is defined as (q, uw, sγ0) → (q′, w, γγ0), where
δ(q, u, s) = (q′, γ). The language recognized by the PDA is

L(A) = {w ∈ Σ∗ | (q0, w,⊥)→∗ (qacc, ε, γ) for some qacc ∈ F and γ ∈ Γ∗⊥}.

Theorem 9.1 (Knuth [5]). For every language L ⊆ Σ∗, the following statements are equivalent:

1. L is described by an LR(k) grammar for some k > 1;

2. L is described by an LR(1) grammar;

3. L is recognized by a DPDA.

9.3.2 Grammars to automata

An LR(k) grammar describing a language L to a DPDA recognizing the same language. First,
a weaker transformation: to a DPDA recognizing L$, with a dedicated end-marker $.

Lemma 9.1 (Knuth [5]). Let G = (Σ, N,R, S) be an LR(k) grammar, let the end-marker $ be
a new symbol not in Σ. Then there exists and can be effectively constructed a DPDA over the
alphabet Σ ∪ {$} that recognizes the language L(G)$.

4 A. Okhotin, “Formal grammars” (chapter 9 draft, September 25, 2014)

Proof. LetM = (Σ∪N, Q̂, q̂0, δ̂, F̂) be a DFA processing the LR parser’s stack, let Action : Q̂×
Σ6k → {Shift} ∪ {Reduce A → α}A→α∈R be the parser’s action table. Denote the greatest
number of symbols in the right-hand side of a rule by m = maxA→α∈R |α|.

The DPDA is defined as a septuple (Σ, Q,Γ, q0,⊥, δ, F), where

Q = Σ6k ∪
(
Σ6k × {0, 1, . . . ,m} ×N

)
∪ {Acc},

Γ = {⊥} ∪ Q̂,
q0 = ε,

F = {Acc},

An internal state of the form x ∈ Σ6k is a buffer containing a look-ahead string, necessary for
simulating the LR(k) parser. The automaton begins its computation by filling the buffer with
symbols:

δ(x, a,⊥) = (xa,⊥) (|x| < k)

Once the buffer is filled, the automaton writes down in its stack the parser’s initial stack config-
uration, and becomes ready so simulate the parsing:

δ(x, ε,⊥) = (x,⊥q̂0) (|x| = k)

If the end of the input is reached before the buffer is completely filled, the automaton proceeds
with the simulation all the same:

δ(x, $,⊥) = (x,⊥q̂0) (|x| < k)

Next, for every look-ahead string x ∈ Σ6k and for every state q̂ of the LR-DFA, the transitions
of the DPDA are defined on the basis of the LR parser’s action table. If Action(q̂, x) = Shift,
then let x = ay (assuming LR(k) with k > 1). The DPDA should push a symbol δ̂(q̂, a) onto
the stack, remove a from the buffer and update the buffer. If there is input symbol b coming, it
should be appended to the end of the buffer:

δ(ay, b, q̂) = (yb, q̂δ(q̂, a)) (|ay| = k)

If the DPDA reads an end-marker instead, then it has just seen the end of the input, and all
remaining symbols of the input are kept in the buffer:

δ(ay, $, q̂) = (y, q̂δ(q̂, a)) (|ay| = k)

And if the end of the input has already been seen, the DPDA no longer attempts reading any
symbols from the input and runs entirely on its buffer contents:

δ(ay, ε, q̂) = (y, q̂δ(q̂, a)) (|ay| < k)

Assume that Action(q̂, x) = Reduce A → α. Then, in order to simulate the behaviour of
an LR(1) parser, the DPDA should pop as many symbols from the stack as there are symbols
in α, then pop one more stack symbol q̃ and push the state δ̂(q̃, A) onto the stack, all without
touching the input or the buffer. This is done in the intermediate states of the form (x, i, A),
where the number i ∈ {0, 1, . . . ,m} indicates the number of stack symbols left to discard.

δ(x, ε, q̂) = ((x, |α|, A), q̂)

δ((x, i, A), ε, q̃) = ((x, i− 1, A), ε) (i > 0)

δ((x, 0, A), ε, q̃) = (x, δ̂(q̃, A))

Deterministic bottom-up parsing 5

Alternatively, if the LR(k) parser finds its initial state q̃0 underneath, and A = S, then the parser
accepts; this is implemented by the DPDA in the following transition:

δ((x, 0, A), ε, q̃) = (Acc, ε)

It remains to remove the end-marker.

Lemma 9.2 (Ginsburg and Greibach [4]). Let $ /∈ Σ. If a language L$ ⊆ Σ∗$ is recognized by
a DPDA, then so is L.

9.3.3 Automata to grammars

Lemma 9.3 (Knuth [5]). For every DPDA recognizing a language L ⊆ Σ∗, there exists an LR(1)
grammar describing the same language.

9.5 Input-driven automata and grammars

Idea: the string is already given in a parsed form, and a grammar is expected to define some
fine details of the syntax.

Example: XML.
An input-driven pushdown automaton has an input alphabet split into three classes, and the

type of the current symbol determines whether the automaton must push onto the stack, pop
from the stack, or ignore the stack. The model was studied in two waves: first considered by
Mehlhorn [8], later rediscovered and further studied by Alur and Madhusudan [1] in 2004 under
the name of “visibly pushdown automata”.

9.5.1 Input-driven pushdown automata

A (deterministic) input-driven pushdown automaton (IDPDA) is a special case of a deter-
ministic pushdown automaton, in which the input alphabet is split into three classes, Σ+1, Σ−1

and Σ0, and the type of the input symbol determines the type of the operation with the stack.
For an input symbol in Σ+1, the automaton always pushes one symbol onto the stack. If the
input symbol is in Σ−1, the automaton must pop one symbol. Finally, for a symbol in Σ0, the
automaton may not use the stack: that is, neither modify it, nor even examine its contents.

Definition 9.2 (Mehlhorn [8]; Alur and Madhusudan [1]). A deterministic input-driven push-
down automaton (IDPDA) is an octuple M = (Σ+1,Σ0,Σ−1, Q,Γ, q0, 〈δa〉a∈Σ, F), in which:

• Σ = Σ+1 ∪ Σ0 ∪ Σ−1 is an input alphabet split into three disjoint classes;

• Q is a finite set of (internal) states of the automaton;

• Γ is the pushdown alphabet;

• q0 ∈ Q is the initial state;

• the transition function by each left bracket symbol < ∈ Σ+1 is a partial function δ< : Q→
Q×Γ, which, for a given current state, provides the next state and the symbol to be pushed
onto the stack;

• for each neutral symbol c ∈ Σ0, the state change is described by a partial function δc : Q→
Q;

6 A. Okhotin, “Formal grammars” (chapter 9 draft, September 25, 2014)

• for every right bracket symbol > ∈ Σ−1, there is a partial function δ> : Q×Γ→ Q specifying
the next state, assuming that the given stack symbol is popped from the stack;

• F ⊆ Q is the set of accepting states.

A configuration of A is a triple (q, w, x), where q ∈ Q is the state, w ∈ Σ∗ is the remaining
input and x ∈ Γ∗ is the stack contents. The initial configuration on an input string w0 ∈ Σ∗ is
(q0, w0, ε). For each configuration with at least one remaining input symbol, the next configuration
is uniquely determined by a single step transition function defined as follows:

• for each left bracket < ∈ Σ+1, let (q,<w, x) `A (q′, w, γx), where δ<(q) = (q′, γ);

• for every right bracket > ∈ Σ−1, let (q,>w, γx) `A (δ>(q, γ), w, x);

• for a neutral symbol c ∈ Σ0, define (q, cw, x) `A (δc(q), w, x).

Once the input string is exhausted, the last configuration (q, ε, x) is accepting if q ∈ F and x = ε.
The language L(A) recognized by the automaton is the set of all strings w ∈ Σ∗, on which the
computation from (q0, w, ε) is accepting.

Under this definition, IDPDA work only on well-nested strings. Alur and Madhusudan [1]
gave a slightly relaxed definition that also applies to ill-nested strings.

Example 9.2. Consider the language L = { anbn|n > 0}∪{ anbc|n > 0} defined over the alphabet
Σ = Σ+1∪Σ−1∪Σ0, where Σ+1 = {a}, Σ−1 = {b, c} and Σ0 = ∅. This language is recognized by
a DIDPDA A = (Σ+1,Σ0,Σ−1, Q,Γ, q0, 〈δa〉a∈Σ, F), with the set of states Q = {q0, q1, qb, qc, qacc}
and with the pushdown alphabet Γ = {s0, s1}. In the initial state q0, the automaton reads the
first a and pushes s0.

δa(q0) = (q1, s0)

All subsequent symbols a are read in the state q1, where the stack symbol pushed is s1.

δa(q1) = (q1, s1)

Thus, after reading an, the stack contains sn−1
1 s0. Once the automaton reads the first b or c, it

enters a state, in which it will only read symbols of the same type.

δb(q1, s1) = qb

δc(q1, s1) = qc

Each remaining symbol b or c is matched to the corresponding a by popping a stack symbol.

δb(qb, s1) = qb

δc(qc, s1) = qc

Once the last matching b or c is read, the automaton knows that by the symbol s0, and accordingly
enters the unique accepting state.

δb(qb, s0) = δc(qc, s0) = qacc

Deterministic bottom-up parsing 7

9.5.2 Nondeterministic input-driven pushdown automata

Definition 9.3 (von Braunmühl and Verbeek [2]; Alur and Madhusudan [1]). A nondeterministic
input-driven pushdown automaton is a tuple M = (Σ+1,Σ0,Σ−1, Q,Q0,Γ, 〈δa〉a∈Σ, F), in which:

• Q0 is a set of initial states;

• for each push-symbol < ∈ Σ+1, there is a nondeterministic transition function δ< : Q →
2Q×Γ, which, for a given current state, provides zero or more transitions of the form (next
state, symbol to be pushed);

• for each neutral symbol c ∈ Σ0, the state change is nondeterministic, via a function δc : Q→
2Q;

• for every pop-symbol > ∈ Σ−1, there is a nondeterministic transition function δ> : Q×Γ→
2Q.

9.5.3 Determinization

One of the most important facts about input-driven automata is that their nondeterministic
variant can be determinized. This possibility relies on the property that all nondeterministic
computations on the same input string must use exactly the same sequence of push and pop
operations. A simulating deterministic IDPDA follows the same sequence of stack operations,
and can trace all possible computations of the nondeterministic IDPDA. Differing from the well-
known subset construction for finite automata, this simulation keeps track of a set of pairs of
states of the nondeterministic machine (rather than just a subset of the set of states), where a
pair (p, q) refers to a computation on a well-nested substring that begins in state p and ends in
state q.

Theorem 9.2 (von Braunmühl and Verbeek [2]). For every nondeterministic IDPDA M defined
over an alphabet Σ = Σ+1 ∪ Σ−1 ∪ Σ0, with a set of states Q and a pushdown alphabet Γ, there
exists a deterministic IDPDA M ′ with the set of states Q′ = 2Q×Q and with the pushdown
alphabet Γ′ = 2Q×Q × Σ+1, which recognizes the same language.

Notably, the number of stack symbols in the original NIDPDA does not affect the size of the
simulating DIDPDA, because the latter never stores those stack symbols.

Proof. Let A = (Σ+1,Σ0,Σ−1, Q,Q0,Γ, 〈δa〉a∈Σ, F) be an NIDPDA. Construct a DIDPDA B =
(Σ+1,Σ0,Σ−1, Q

′, Q0,Γ
′, 〈δ′a〉a∈Σ, F

′), with Q = 2Q×Q and Γ′ = 2Q×Q × Σ+1, as follows. Every
state P ⊆ Q × Q of B is a set of pairs of states of A, each corresponding to the following
situation: whenever (p, q) ∈ P , both p and q are states in one of the computations of A, where
p was reached just after reading the most recent left bracket, whereas q is the current state of
that computation.

The initial state of B, defined as q′0 = { (q, q) | q ∈ Q0}, represents the behaviour of A on the
empty string, which begins its computation in an initial state, and remains in the same state.
The set of accepting states reflects all computations of A ending in an accepting state.

F ′ = {P ⊆ Q×Q | there is a pair (p, q) ∈ P, with q ∈ F}

The transition functions δ′a, with a ∈ Σ, are defined as follows.

• On a left bracket < ∈ Σ+1, the transition in a state P ∈ Q′ is τ<(P) = (P ′, (<,P)), where

P ′ = { (q′, q′) | there is a pair (p, q) ∈ P) : (∃s ∈ Γ) : (q′, s) ∈ δ<(q)}.

8 A. Okhotin, “Formal grammars” (chapter 9 draft, September 25, 2014)

Thus, B pushes the current context of the simulation onto the stack, along with the current
left bracket, and starts the simulation afresh at the next level of brackets, where it will
trace the computations from all states q′ reachable by A at this point.

• For a neutral symbol c ∈ Σ0 and a state P ∈ Q′, the transition δ′c(P) = { (p, q′) | ∃(p, q) ∈
P : q′ ∈ δc(q)} directly simulates one step of A in all currently traced computations.

• For a right bracket > ∈ Σ−1 and a state P ′ ⊆ Q′, the automaton pops a stack symbol
(<,P) ∈ Γ′ containing a matching left bracket and the context of the previous simulation.
Then, each computation in P is continued by simulating the transition by the left bracket,
the behaviour inside the brackets stored in P ′, and the transition by the right bracket.

δ′>(P ′, (<,P)) = { (p, q′′)|(∃(p, q) ∈ P)(∃(p′, q′) ∈ P ′)(∃s ∈ Γ) : (p′, s) ∈ δ<(q), q′′ ∈ δ>(q′, s)}

• For an unmatched right bracket > ∈ Σ−1, the transition in a state P ∈ Q′ advances all
currently simulated computations of A in the same way as for a neutral symbol: τ>(P,⊥) =
{(p, q′) | ∃(p, q) ∈ P : q′ ∈ δ>(q′,⊥)}.

The correctness of the construction can be proved by induction on the bracket structure of an
input string.

Matching lower bound.

Theorem 9.3 (Alur and Madhusudan [1]). Consider an alphabet Σ = Σ+1 ∪ Σ0 ∪ Σ−1 with
Σ+1 = {<}, Σ−1 = {>} and Σ0 = {0, 1,#}. Then, for each n > 1, there exist a language Ln
over Σ, which is recognized by an NIDPDA with O(n) states and n stack symbols, while every
DIDPDA for Ln needs at least 2n

2 states.

9.5.4 Input-driven grammars

Definition 9.4 (Alur and Madhusudan [1]). An input-driven grammar is a quadruple G =
(Σ, N,R, S), where

• Σ = Σ+1 ∪ Σ0 ∪ Σ−1 is the alphabet, split into three disjoint classes;

• N is the set of nonterminal symbols;

• R is the set of rules, each of the form A→ C, A→ aC or A→ ε, with A,B,C ∈ N ,
< ∈ Σ+1, > ∈ Σ−1 and a ∈ Σ.

• S ∈ N is the initial symbol.

Definition 9.5. An input-driven Boolean grammar if a quadruple G = (Σ, N,R, S), where there
exists a partition of the alphabet into three disjoint classes Σ = Σ+1∪Σ0∪Σ−1, and all rules are
of the following form,

A→ <C1>B1 & . . .&<Cm>Bm &¬<E1>D1 & . . .&¬<En>Dn

A→ cB1 & . . .& cBm &¬cD1 & . . .&¬cDn

A→ ε

Any such grammar is called conjunctive, of n = 0 in all rules, and ordinary, if furthermore
m = 1.

All these grammar models are equivalent to IDPDA.

Deterministic bottom-up parsing 9

9.5.5 Operations on input-driven automata

Closed under Boolean operations, concatenation and Kleene star (for binary operations,
assuming the same partition of the alphabet in both arguments).

Exercises

9.5.1. (by Chistikov) For every n > 0, consider the singleton language Ln = {anbn}. Construct
an IDPDA recognizing Ln, with Θ(

√
n) states and with a fixed number of stack symbols.

9.6 Generalized LR parsing

On the one hand, simulates nondeterminism in LR parsing. On the other hand, this is a
more practical implementation of tabular algorithms.

9.6.1 Nondeterminism in LR parsing

Generalized LR parsing, first proposed by Lang [7] and later independently discovered and
developed by Tomita [10], is a polynomial-time method of simulating nondeterminism in the
deterministic LR. Every time a deterministic LR parser has to choose an action to perform (to
shift an input symbol or to reduce by one or another rule), a generalized LR parser performs
both actions, storing all possible contents of an LR parser’s stack in the form of a graph, which
contains O(n) vertices and therefore fits in O(n2) memory. The algorithm is applicable to every
ordinary grammar, and its complexity is bounded by cubic. It works for conjunctive grammars
with minimal modifications, while maintaining its cubic-time complexity. A further extension to
Boolean grammars requires more significant modifications, and runs in time O(n4). The main
advantage of this algorithm over the tabular algorithms is that it works much faster on “good”
grammars: for instance, in linear time on the Boolean closure of the deterministic languages.

9.6.2 Example

Example 9.3. Consider the following grammar describing the language { anbn | n > 0} ∪
{ anb2n | n > 0}.

S → A | B
A→ aAb | ε
B → aBbb | ε

The grammar is not LR(k) for any k, (***ref earlier example***)
TBW: nondeterministic LR table for this grammar
***TBW: how the Generalized LR parser works on this grammar, on the input w = aaabbbbbb.

9.6.3 Graph-structured stack

The Generalized LR uses a graph-structured stack to represent the contents of the linear stack
of a standard LR parser in all possible branches of a nondeterministic computation. This is a
directed graph with a designated source node, representing the bottom of the stack. Each arc
of the graph is labelled with a symbol from Σ ∪N . The nodes are labelled with the states of a
DFA processing the labels on the path from the source node. This would typically be one of the
DFAs defined for the Deterministic LR, and it is used merely to help the parser handle at least
some decisions deterministically. In particular, the source node is labelled with the initial state.
There is a non-empty collection of designated nodes, called the top layer of the stack. Every arc

10 A. Okhotin, “Formal grammars” (chapter 9 draft, September 25, 2014)

leaving one of these nodes has to go to another node in the top layer. The labels of these nodes
should be pairwise distinct, and hence the number of top layer nodes is bounded by a constant.

9.6.4 The algorithm

Initially, the stack contains a single source node, which at the same time forms the top layer.
The computation of the algorithm is an alternation of reduction phases, in which the arcs going
to the top layer are manipulated without consuming the input, and shift phases, where a single
input symbol is read and consumed, and a new top layer is formed as a successor of the former
top layer.

The shift phase is carried out as illustrated in Figure 9.1. Let a be the next input symbol.
For each top layer node labelled with a state q, the algorithm follows the transition of the DFA
from q by the symbol a. If the transition leads to a certain state q′, a node labelled with this
state is created in the new top layer. If it is undefined, this branch of the graph-structured stack
is removed.

Figure 9.1: The shift phase in the Generalized LR parsing algorithm.

The reduction phase for an ordinary grammar is a sequence of additions of arcs labelled by
nonterminals and leading to the top layer. If a grammar has a rule A → α, then, whenever
the graph contains a node q, which is connected to the top layer by the path α, the parser may
perform a reduction by this rule, adding an arc labelled A from q to a node in the top layer
labelled by the appropriate state of the DFA. This is illustrated in Figure 9.2(a).

In the case of a conjunctive grammar, for a rule A → α1 & . . .&αm, the reduction requires
m paths from q to the top layer, labelled with α1, . . . , αm, as shown in Figure 9.2(b).

For a Boolean grammar, a rule A → α1 & . . .&αm &¬β1 & . . .&¬βn. further requires that
there are no paths β1, . . . , βn, see Figure 9.2(c). Furthermore, a Generalized LR parser for a
Boolean grammar may remove (“invalidate”) an arc if the conditions for its existence no longer
hold.

α1
αm

A

α

A

(a) (b)

0 1
2

3

2

3

4

1
0

A

0 1

2

3

4

α1

αm
β1
βn

(c)

Figure 9.2: Reduction in Generalized LR: (a) by a rule A → α in an ordinary gram-
mar; (b) by a rule A → α1 & . . .&αm in a conjunctive grammar; (c) by a rule A →
α1 & . . .&αm &¬β1 & . . .&¬βn in a Boolean grammar.

The input string is accepted, if the last reduction phase (the one after shifting the last input

Deterministic bottom-up parsing 11

symbol) produces an arc labelled S from the source node to the top layer, which represents a
parse of the entire string according to the grammar. The algorithm works correctly—that is,
accepts if and only if the string is in the language—for every conjunctive grammar. It also works
correctly for most Boolean grammars, although a grammar expressing a contradiction, such as
S → ¬S, would bring a parser into an infinite cycle of reductions and invalidations.

9.6.5 Searching in the stack

The worst-case running time of the algorithm depends on how efficiently the operations on
the graph are implemented. For ordinary and for conjunctive grammars, can be done in time
O(n3). However, one of the main benefits of this algorithm is that it works much faster on
“better” grammars: for instance, in linear time on Boolean combinations of LR(1) grammars.

Bibliography

[1] R. Alur, P. Madhusudan, “Visibly pushdown languages”, ACM Symposium on Theory of
Computing (STOC 2004, Chicago, USA, 13–16 June 2004), 202–211.

[2] B. von Braunmühl, R. Verbeek, “Input driven languages are recognized in log n space”,
North-Holland Mathematics Studies, 102 (1985), 1–19.

[3] F. DeRemer, “Simple LR(k) grammars”, Communications of the ACM, 14:7 (1971), 453–460.

[4] S. Ginsburg, S. A. Greibach, “Deterministic context-free languages”, Information and Con-
trol, 9:6 (1966), 620–648.

[5] D. E. Knuth, “On the translation of languages from left to right”, Information and Control,
8:6 (1965), 607–639.

[6] A. J. Korenjak, “A practical method for constructing LR(k) processors”, Communications
of the ACM 12:11 (1969), 613–623.

[7] B. Lang, “Deterministic techniques for efficient non-deterministic parsers”, ICALP 1974,
LNCS 14, 255–269.

[8] K. Mehlhorn, “Pebbling mountain ranges and its application to DCFL-recognition”, Au-
tomata, Languages and Programming (ICALP 1980, Noordweijkerhout, The Netherlands,
14–18 July 1980), LNCS 85, 422-435.

[9] A. Okhotin, “Generalized LR parsing algorithm for Boolean grammars”, International Jour-
nal of Foundations of Computer Science, 17:3 (2006), 629–664.

[10] M. Tomita, “An efficient augmented context-free parsing algorithm”, Computational Lin-
guistics, 13:1 (1987), 31–46.

12

http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1016/S0304-0208(08)73072-X
http://dx.doi.org/10.1145/362619.362625
http://dx.doi.org/10.1016/S0019-9958(66)80019-0
http://dx.doi.org/10.1016/S0019-9958(65)90426-2
http://doi.acm.org/10.1145/363269.363281
http://dx.doi.org/10.1007/3-540-06841-4_65
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1142/S0129054106004029

Index

Alur, Rajeev (b. 1966), 5, 7, 8

von Braunmühl, Burchard, 7

Chistikov, Dmitry, 9
Chomsky, Avram Noam (b. 1928), 3

Ginsburg, Seymour (1928–2004), 3, 5
Greibach, Sheila Adele (b. 1939), 3, 5

Knuth, Donald Ervin (b. 1938), 2, 3, 5

Lang, Bernard, 9

Madhusudan, Parthasarathy, 5, 7, 8
Mehlhorn, Kurt (b. 1949), 5

Schützenberger, Marcel Paul (1920–1996), 3

Tomita, Masaru (b. 1957), 9

Verbeek, Rutger, 7

13

	Deterministic bottom-up parsing
	The basics of Shift–Reduce parsing
	Parsing tables used by LR parsers
	Representation by pushdown automata
	Deterministic pushdown automata
	Grammars to automata
	Automata to grammars

	Input-driven automata and grammars
	Input-driven pushdown automata
	Nondeterministic input-driven pushdown automata
	Determinization
	Input-driven grammars
	Operations on input-driven automata

	Generalized LR parsing
	Nondeterminism in LR parsing
	Example
	Graph-structured stack
	The algorithm
	Searching in the stack

	Bibliography
	Name index

