"Теоретико-сложностные основы криптографии". Заметки к курсу в СПбАУ

А.В. Смаль

22 февраля 2018 г.

Аннотация

Курс посвящён изучению теоретических оснований, на которых строится надёжность криптографических протоколов.

Содержание

1.	. Совершенная надёжность	2
2.	. Односторонние функции	2
	2.1. Односторонние функции с худшем случае	3
	2.2. Односторонние функции для алгоритмов	3
	2.3. Односторонние функции для неравномерного противника	4
	2.4. Примеры односторонних функций	4
	2.5. Построение сильно односторонних функций из слабо односторонних	5
	2.6. Частичные односторонние функции	8
3.	. Генераторы псевдослучайных чисел	10
	3.1. Вычислительно неотличимые случайные величины	10
	3.2. Генераторы псевдослучайных чисел	11

Введение

Мы будем предполагать, что алгоритмы шифрования/дешифрования всем известны (т.е. no security by obscurity).

1. Совершенная надёжность

Определение 1.1. Система шифрования с закрытым ключом — это пара алгоритмов E(k,m) и D(k,c), такая, что для любых k и m выполняется D(k,E(k,m))=m. Система называется совершенно надёжной, если для любых двух сообщений m_1 и m_2 случайные величины $E(k,m_1)$ и $E(k,m_2)$ при $k \leftarrow \mathcal{U}(K)$ распределены одинаково (\mathcal{K} — пространство ключей).

Замечание 1.1. Система шифрования с одноразовым шифроблокнотом является совершенно надёжной.

Замечание 1.2. Для совершенной надёжности необходимо, чтобы длина ключа была не менее длины сообщения.

Теорема 1.1. Пусть P = NP. Тогда для любой системы шифрования с закрытым ключом (E, D) с полиномиальным алгоритмом E, в которой |m| > |k|, существуют сообщения m_0 и m_1 и полиномиальный алгоритм A, для которого

$$\left| \Pr_{k}[A(E(k, m_0)) = 1] - \Pr_{k}[A(E(k, m_1)) = 1] \right| \ge \frac{1}{2}.$$

Доказательство. Не уменьшая общности предположим, что $\mathcal{K} = \{0,1\}^{n-1}$. Возьмём в качестве $m_0 = 0^n$. Пусть $S = \{E(k,0^n) \mid k \in \mathcal{K}\}$. Легко видеть, что $S \in NP$ и $|S| \leq 2^{n-1}$. Возьмём в качестве алгоритма A полиномиальный разрешающий алгоритм для S, т.е. $A(y) := [y \in S]$ (он существует по предположению P = NP).

Для каждого сообщения m рассмотрим $t_m = |\{k \mid E(k,m) \in S\}|$. Если существует сообщение m^* , для которого $t_{m^*} \leq 2^{n-1}$, то $m_1 = m^*$ удовлетворяет требованиям.

Предположим теперь, что $t_m > 2^{n-2}$ для любого m. Это значит, что существуют более $2^{n-2} \cdot 2^n = 2^{2n-2}$ пар ключ-сообщение (k,m), для которых $E(k,m) \in S$. Следовательно, для некоторого $y \in S$ существует более $2^{2n-2}/|S| \geq 2^{n-1}$ пар (k,m) : E(k,m) = y, т.е. существуют ключ k и два различных сообщения m' и m'': E(k,m') = E(k,m''). Это противоречит корректности системы шифрования.

2. Односторонние функции

Доказывать надёжность криптографических протоколов без каких-либо предположений, к сожалению, не получается — из такого доказательства следовало бы $P \neq NP$. Было бы здорово показать, что криптография возможна, если $P \neq NP$, но это тоже не получается сделать. Поэтому в дальнейшем мы будем отталкиваться от более сильного предположение — предположения о существовании односторонней функции.

В дальнейшем мы будем рассматривать семейства функций $f_n: \{0,1\}^{k(n)} \to \{0,1\}^{l(n)}$, где k(n) и l(n) будут некоторыми полиномами. Кроме того, нас почти всегда будут интересовать функции, которые можно вычислить за полиномиальное время.

Определение 2.1. Семейство функций $f_n: \{0,1\}^{k(n)} \to \{0,1\}^{l(n)}$ называется *полино-миально вычислимым*, если имеется алгоритм, который получая на вход число n и x длины k(n) вычисляет $f_n(x)$ за полиномиальное от n время.

2.1. Односторонние функции с худшем случае

Определение 2.2. Полиномиально вычислимое семейство функций $f_n: \{0,1\}^{k(n)} \to \{0,1\}^{l(n)}$ называется односторонним в худшем случае, если не существует полиномиально вычислимой функции g_n , что для любого $x \in \{0,1\}^{k(n)}$ верно $f_n(g_n(f_n(x))) = f_n(x)$.

Теорема 2.1. Односторонние функции с худшем случае существуют $\iff P \neq NP$. Доказательство.

- \Rightarrow Пусть P=NP. Определим язык $L=\{(1^n,y,z)\mid \exists x,|x|=k(n),z\sqsubseteq x,f_n(x)=y\},$ $L\in NP$. По предположению для L существует полиномиальный разрешающий алгоритм. Для нахождения прообраза y запустим этот алгоритм сначала на слове $(1^n,y,\lambda)$, где λ пустая строка. Если это слово не принадлежит L, то y не имеет прообраза. В противном случае восстановим прообраз y по битам: сначала запустим алгоритм для слова $(1^n,y,0)$ и проверим, есть ли y y прообраз начинающийся с нуля. Далее аналогично восстановим второй и все последующие биты. Нам потребуется k(n)+1 запуск полиномиального алгоритма, т.е. прообраз можно найти алгоритмически за полиномиальное время.
- \Leftarrow Если $P \neq NP$, то можно построить одностороннюю в худшем на основе любой NP-трудной задачи. Пусть R(x,y) это отношение, задающее NP-трудную задачу S (например, для S = SAT: $R(\phi,a) = 1 \iff \phi(a) = 1$). Пусть $f_n(x,y) = (x,R(x,y))$. Если f_n^{-1} вычисляется за полиномиальное время, то и задачу S можно решить за полиномиальное время, вычислив $f^{-1}(x,1)$.

2.2. Односторонние функции для алгоритмов

Мы будем определять *односторонние функции* для противника, который является вероятностным полиномиальным алгоритмом, т.е. для *равномерного противника*.

Определение 2.3. Полиномиально вычислимое семейство f_n называется слабо односторонним для равномерного противника, если существует такой полином p, что для любого полиномиального вероятностного алгоритма R при всех достаточно больших n

$$\Pr_{x,R}[f_n(R(1^n, f_n(x))) = f_n(x)] < 1 - \frac{1}{p(n)}.$$

Определение 2.4. Полиномиально вычислимое семейство f_n называется сильно односторонним для равномерного противника, если существует такой полином q, что для любого полиномиального вероятностного алгоритма R при всех достаточно больших n

$$\Pr_{x,R}[f_n(R(1^n, f_n(x))) = f_n(x)] < \frac{1}{q(n)}.$$

2.3. Односторонние функции для неравномерного противника

Аналогичным образом можно определить односторонние функции для противника, являющегося последовательностью схем, т.е. для неравномерного противника.

Определение 2.5. Полиномиально вычислимое семейство f_n называется *слабо односторонним для неравномерного противника*, если существует такой полином p, что для любой последовательности схем C_n полиномиального размера при всех достаточно больших n

$$\Pr_{x}[f_n(x) = f_n(C_n(f_n(x)))] < 1 - \frac{1}{p(n)}.$$

Определение 2.6. Полиномиально вычислимое семейство f_n называется сильно односторонним для неравномерного противника, если существует такой полином q, что для любой последовательности схем C_n полиномиального размера при всех достаточно больших n

$$\Pr_{x}[f_{n}(x) = f_{n}(C_{n}(f_{n}(x)))] < \frac{1}{q(n)}.$$

Замечание 2.1. Односторонние функции для неравномерного противника можно было бы определять для вероятностных схем, т.е. для схем, которым на вход подают не только $f_n(x)$, но и некоторую строку со случайными битами r. Однако, легко показать, что от случайных битов в таких определениях можно избавиться: для этого нужно для каждого n выбрать одну "самую лучшую" строку r_n , на которой достигается максимальная вероятность обращения f_n и "зашить" её в схему. Нетрудно увидеть, что вероятность обращения при $r = r_n$ будет не меньше, чем по всем r в среднем.

В дальнейшем мы часто будем говорить про односторонние функции, подразумевая под этим семейства односторонних функций. Когда говорят про одностороннюю функцию, то имеется в виду сильно односторонняя функция.

Определение 2.7. Если в определении односторонней функции убрать требование полиномиальной вычислимости, то получится определение *необратимой* функции.

2.4. Примеры односторонних функций

Неизвестно, существуют ли односторонние или хотя бы слабо односторонние функции (даже для равномерного противника). Доказательство их существования повлечёт за собой $P \neq NP$.

Теорема 2.2. Если P = NP, то любое полиномиально вычислимое семейство функций f_n не является слабо необратимым даже для равномерного противника. Более того, существует детерминированный алгоритм, который для всех x по n и $f_n(x)$ за полиномиальное от n время находит некоторый прообраз $f_n(x)$ длины k(n).

Доказательство. См. пункт "⇒" доказательства теоремы 2.1. □

Пример 2.1 (произведение натуральных чисел). Семейство f_n устроено следующим образом: k(n) = l(n) = 2n, вход x делится пополам, каждая половинка представляет собой n-битовое число, результат f_n — произведение этих чисел (получится не более чем 2n-битовое число).

Пример 2.2 (SUBSET-SUM). Семейство f_n для SUBSET-SUM устроено следующим образом: $k(n) = n^2 + n$, $l(n) = n^2 + 2n + \lceil \log n \rceil$, вход x разбивается на n+1 блок длины n, первые n блоков интерпретируются как n-битовые числа x_1, \ldots, x_n , а последний блок интерпретируется как подмножество [n]. Тогда $f_n(x) = \langle x_1, x_2, \ldots, x_n, \sum_{i \in I} x_i \rangle$.

2.5. Построение сильно односторонних функций из слабо односторонних

Теорема 2.3. Если существуют слабо односторонние функции, то существуют и сильно односторонние функции (это верно для любых противников).

$$\Pr_{x,r}[f_n(x) = f_n(R(1^n, f_n(x), r))] < 1 - \frac{1}{p(n)}.$$

Определим функцию F, которая определяется следующим соотношением:

$$F_n(x_1, x_2, \dots, x_N) = \langle f_n(x_1), f_n(x_2), \dots, f_n(x_N) \rangle,$$

т.е. $F_n: \{0,1\}^{N\cdot k(n)} \to \{0,1\}^{N\cdot l(n)}$. Для того, чтобы обратить F_n нам нужно N раз обратить функцию f_n . В каждом случае вероятность ошибки не меньше 1/p(n), поэтому общая вероятность успеха не более $\left(1-1/p(n)\right)^N$. Для $N=n\cdot p(n)$ эта вероятность близка к e^{-n} , что убывает быстрее любого обратного полинома. Таким образом функция F — сильно односторонняя.

В предыдущем рассуждении кроется ошибка. Дело в том, что мы предполагаем, что обращающий алгоритм будет обязательно устроен следующим образом: он будет пытаться N раз обратить f_n , т.е. найти прообразы для $f_n(x_1), f_n(x_2), \ldots, f_n(x_N)$. Это не обязательно так — мы не можем предполагать, что этот алгоритм будет устроен каким-то конкретным образом. Поэтому предыдущее доказательство ошибочное, хотя получившаяся функция F действительно сильно односторонняя.

Корректное доказательство этого факта будет устроено другим образом. Мы предположим, что функция F не является сильно односторонней и из этого покажем, что в свою очередь функция f не является слабо односторонней. Для этого мы воспользуемся алгоритмом, который обращает F, для построения алгоритма обращения f. Предположим, что алгоритм R_F умеет обращать F с вероятностью успеха более 1/q(n) для некоторого полинома q. Тогда мы покажем, что существует алгоритм R_f , который обращает f с вероятностью успеха более 1-1/p(n).

Алгоритм R_f мог бы быть устроен так: для обращения y мы выберем случайные x_2, x_3, \ldots, x_N и запустим алгоритм R_F на входе $\langle y, f_n(x_2), f_n(x_3), \ldots, f_n(x_N) \rangle$. Действительно, если R_F найдёт прообраз для этого входа, то он в т.ч. найдёт и прообраз для y. Вероятность успеха R_F на таком входе для случайного y не менее вероятности успеха R_F для случайных x_1, \ldots, x_N . Однако нам этого недостаточно — мы хотели бы получить вероятность успеха близкую к единице.

Для этого будем использовать два дополнительных приёма:

- будем пытаться подставить y не только на место $f_n(x_1)$, а для каждого i будем запускать алгоритм R_F на входе $\langle f_n(x_1), \ldots, f_n(x_{i-1}), y, f_n(x_{i+1}), \ldots, f_n(x_N) \rangle$ для случайных $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_N$;
- будем повторять каждую итерацию M раз для различных случайных независимых наборов $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_N$.

Давайте выделим один $payн \partial$ алгоритма R_f : для каждого i выбирается независимый случайный набор $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_N$ и вызывается алгоритм R_F на входе $\langle f_n(x_1), \ldots, f_n(x_{i-1}), y, f_n(x_{i+1}), \ldots, f_n(x_N) \rangle$. Этот этап будет повторён M раз. Значение M мы выберем позже, это будут некоторый полином от n.

Введём обозначение $s_i(x)$ — вероятность того, что алгоритм R_F найдёт прообраз $\langle f_n(x_1), \ldots, f_n(x_{i-1}), f_n(x), f_n(x_{i+1}), \ldots, f_n(x_N) \rangle$ для случайных $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_N$. Через $\hat{s}(x)$ обозначим вероятность успеха одного раунда алгоритма R_f . Эта вероятность заведомо не меньше максимальной вероятности среди всех $s_i(x)$, т.е. $\hat{s}(x) \geq \max_i s_i(x)$.

Рассмотрим отдельно входы x, которые наш алгоритм R_f обращает с маленькой вероятностью, т.е. это "трудные" для обращения входы. Будем говорить, что x — трудный, если $\hat{s}(x) < \epsilon$ для некоторого обратного полинома ϵ , который мы выберем дальше. Долю трудных "трудных" слов среди всех слов длины n мы обозначим через δ , т.е. $\delta = \Pr_{x \leftarrow U_n}[\hat{s}(x) < \epsilon]$.

Дальнейшее доказательство будет построено так: мы предположим, что получившийся алгоритм R_f не обращает функцию f с нужной вероятностью, т.е. вероятность его ошибки большее 1/p(n). Из этого будет следовать, что доля трудных слов δ довольно большая (больше некоторого обратного полинома). А раз трудных слов много, то

¹Этот приём необходим, т.к. в противном случае у нас не получится увеличивать вероятность успеха. Действительно, если представить, что алгоритм R_F не работает на строках, у которых первый бит нулевой, то вероятность успеха такого алгоритма вполне может быть 1/2. Но тогда и вероятность успеха R_f не может быть выше 1/2.

и вероятность успеха R_F не может быть больше 1/q(n). Таким образом мы придём к противоречию. Для реализации этого плана потребуется следующие две леммы.

Лемма 2.1. Вероятность ошибки R_f при обращении слова $f_n(x)$ для случайного x не больше $\delta + (1 - \epsilon)^M$.

Доказательство. По формуле полной вероятности вероятность ошибки R_f при обращении слова $f_n(x)$ для случайного x можно расписать как вероятность ошибки на "трудных" входах и на простых входах.

$$\begin{split} \Pr_{x,r}[\text{ошибка }R_f] &= \Pr_r[\text{ошибка }R_f \mid \hat{s}(x) < \epsilon] \cdot \Pr_x[\hat{s}(x) < \epsilon] \\ &+ \Pr_r[\text{ошибка }R_f \mid \hat{s}(x) \geq \epsilon] \cdot \Pr_x[\hat{s}(x) \geq \epsilon] \\ &\leq 1 \cdot \delta + (1 - \epsilon)^M \cdot 1. \end{split}$$

Лемма 2.2. Вероятность успеха алгоритма R_F при обращении слова $F(\bar{x})$ для случайного $\bar{x} = x_1, \dots, x_N$ не больше $N\delta\epsilon + (1 - \delta)^N$.

Доказательство. Оценим вероятность успеха сверху по формуле полной вероятности:

$$\begin{aligned} \Pr_{\bar{x},r}[\text{ycnex } R_F] &= \Pr_r[\text{ycnex } R_F \mid \exists i, \hat{s}(x_i) < \epsilon] \cdot \Pr_{\bar{x}}[\exists i, \hat{s}(x_i) < \epsilon] \\ &+ \Pr_r[\text{ycnex } R_F \mid \forall i, \hat{s}(x_i) \ge \epsilon] \cdot \Pr_{\bar{x}}[\forall i, \hat{s}(x_i) \ge \epsilon] \\ &\leq \epsilon \cdot N\delta + 1 \cdot (1 - \delta)^N. \end{aligned}$$

Предположим теперь, что у получившегося алгоритма R_f вероятность ошибки больше, чем 1/p(n), т.е. R_f обращает f с вероятностью успеха меньше 1-p(n). Положим $M=n/\epsilon$. Тогда второе слагаемое в лемме 2.1 будет порядка e^{-n} , что при при достаточно больших n меньше, чем $\frac{1}{2p(n)}$. Таким образом $\delta > \frac{1}{2p(n)}$. Теперь мы хотим определить N и ϵ так, чтобы вероятность успеха R_F оказалась

Теперь мы хотим определить N и ϵ так, чтобы вероятность успеха R_F оказалась меньше, чем 1/q(n). Выберем $N = n \cdot p(n)$, тогда при $\delta > \frac{1}{2p(n)}$ мы получаем, что второе слагаемое в лемме 2.2 будет порядка $e^{-n/2}$:

$$(1-\delta)^N < \left(1 - \frac{1}{2p(n)}\right)^{n \cdot p(n)} = \left[\left(1 - \frac{1}{2p(n)}\right)^{2p(n)}\right]^{n/2} \approx e^{-n/2}.$$

При достаточно больших n это меньше, чем $\frac{1}{2q(n)}$. Осталось определить ϵ так, чтобы и первое слагаемое лемме 2.2 было меньше $\frac{1}{2q(n)}$. Например, это достигается при

$$\epsilon = \frac{1}{2N \cdot q(n)} = \frac{1}{2n \cdot p(n) \cdot q(n)}.$$

При таким M, N и ϵ получается, что алгоритм R_f вызовет полиномиальный алгоритм R_F не более $M \cdot N = 2n^3 \cdot p^2(n) \cdot q(n)$ раз, т.е. R_f сам по себе будет полиномиальным.

П

2.6. Частичные односторонние функции

Односторонние функции, которые мы определили выше, определены для всех слов длины k(n). Можно обобщить это определение на случай частичных функций, которые определены на некотором $D_n \subset \{0,1\}^{k(n)}$. Для формализации этого определения нам описать, как будет устроено равномерное распределение на D_n .

Определение 2.8. Последовательность распределений вероятностей μ_n на множестве двоичных слов называется *полиномиально моделируемой*, если существует полиномиальный вероятностный алгоритм K, такой, что для всех $x \in \{0,1\}^*$

$$\Pr_r[K(1^n, r) = x] = \mu_n(x).$$

Определение 2.9. Статистическим расстоянием между распределениями вероятностей μ и ν называется

$$\delta(\mu, \nu) = \max_{A \subset \{0,1\}^*} |\mu(A) - \nu(A)|.$$

Не сложно показать, что максимум достигается при A равном $\{x \mid \mu(x) > \nu(x)\}$ и его дополнению. Таким образом

$$\delta(\mu, \nu) = \frac{1}{2} \sum_{x} |\mu(x) - \nu(x)|.$$

Определение 2.10. Последовательности распределений μ_n и ν_n называются *статистически неотличимыми*, если статистическое расстояние между ними стремится к нулю быстрее любого обратного полинома от n при $n \to \infty$.

Определение 2.11. Случайные величины α_n и β_n называются cmamucmuчecku неотличимыми, если их распределения $\mu_n(x) = \Pr[\alpha_n = x]$ и $\nu_n(x) = \Pr[\beta_n = x]$ статистически неотличимы.

Определение 2.12. Распределение μ_n называется *доступным*, если оно статистически неотличимо от некоторого полиномиально моделируемого распределения ν_n .

Определение 2.13. Семейство частичных функций f_n с областями определения D_n называется *сильно односторонним*, если f_n полиномиально вычислимо, равномерное распределение на D_n доступно, и существует такой полином q, что для любого полиномиального вероятностного алгоритма R,

$$\Pr_{x \leftarrow D_n, r} [f_n(x) = f_n(R(1^n, f_n(x), r))] < \frac{1}{q(n)}$$

при всех достаточно больших n. Сильно одностороннее семейство частичных функций f_n называется сильно односторонней перестановкой, если для всех n оно является перестановкой своей области определения D_n .

Аналогичным образом определяются слабо односторонние функции и односторонние функции для неравномерного противника.

Пример 2.3 (Предположительно сильно односторонние частичные функции).

- 1. Функция Рабина. Функция f_n определена на словах вида xy длины 4n, где |x| = |y| = 2n. При этом x и y интерпретируются как 2n-битовые числа, удовлетворяющих следующим требованиям:
 - (a) $y = p \cdot q$, где p и q простые n-битовые числа вида 4k + 3;
 - (b) $x = z^2 \mod y$ для некоторого z, взаимно простого с y.

Значение функции на xy равно конкатенации слов $x^2 \mod y$ и y.

- 2. Функция RSA является обобщением функции Рабина. Она определена на словах вида xyz, где x, y и z имеют длину 2n и интерпретируются как двоичные записи чисел, удовлетворяющие следующим требованиям:
 - (a) $y = p \cdot q$, где p и q простые n-битовые числа;
 - (b) $x \in [1, pq 1]$ и взаимно просто с y;
 - (c) z взаимно просто $\phi(pq) = (p-1) \cdot (q-1)$.

Значение функции на xyz равно конкатенации слов $(x^z \mod y)$, y и z.

- 3. Дискретная экспонента. Функция определена на словах вида xyz, где x, y и z имеют длину n и соответствующие числа удовлетворяют следующим требованиям:
 - (a) y n-битовое простое число,
 - (b) $x \in [2, y-1]$, порождает всю мультипликативную группу вычетов по модулю y (т.е. любой ненулевой вычет является степенью x),
 - (c) $z \in [1, y 1]$.

Значение функции на xyz равно конкатенации слов x, y и ($x^z \mod y$). Обращение этой функции — является дискретным логарифмированием.

Более подробно об этих примерах см. [1].

Определение 2.14. Частичная функция $f_n: \{0,1\}^{k(n)} \to \{0,1\}^{l(n)}$ называется *проверя-емой*, если по n, любому слову x длины k(n) и любому слову y из множества значений f_n можно за полиномиальное время проверить, верно ли, что f_n определена на x и её значение на x равно y.

Замечание 2.2. Неизвестно, является ли функция Рабина проверяемой, т.к. неясно, как за полиномиальное время проверить, является ли данное число квадратичным вычетом по составному модулю.

3. Генераторы псевдослучайных чисел

3.1. Вычислительно неотличимые случайные величины

Определение 3.1 (Для неравномерного противника). Случайные величины α_n и β_n , зависящие от натурального параметра n, со значениями в множестве слов некоторой длины l(n) называются вычислительно неотличимыми, если для любой последовательности схем $C_0, C_1, \ldots, C_n, \ldots$ размера $\operatorname{poly}(n)$ (с l(n) входами и одним выходом) вероятность событий $C_n(\alpha_n) = 1$ и $C_n(\beta_n) = 1$ отличаются на пренебрежимо малую величину, т.е.

$$\left| \Pr[C_n(\alpha_n) = 1] - \Pr[C_n(\beta_n) = 1] \right| < \epsilon_n,$$

где ϵ_n убывает быстрее любого обратного полинома. Схема C_n в этом контексте называется *тестом* и мы говорим, что случайная величина α_n проходит тест C_n , если $C_n(\alpha_n) = 1$. Таким образом, мы требуем, чтобы α_n и β_n проходили любые тесты полиномиального размера с приблизительно равной вероятностью.

Определение 3.2 (Для равномерного противника). Случайные величины α_n и β_n , зависящие от натурального параметра n, со значениями в множестве слов некоторой длины l(n) называются вычислительно неотличимыми, если для любого вероятностного полиномиального алгоритма T вероятность событий $T(1^n, \alpha_n) = 1$ и $T(1^n, \beta_n) = 1$ отличаются на пренебрежимо малую величину, соответственно

$$\left|\Pr[T(1^n, \alpha_n) = 1] - \Pr[T(1^n, \beta_n) = 1]\right| < \epsilon_n,$$

где ϵ_n убывает быстрее любого обратного полинома. Алгоритм T в этом контексте называется mecmom и мы говорим, что случайная величина α_n проходит тест T, если $T(1^n,\alpha_n)=1$.

Замечание 3.1. Если α_n и β_n статистически неотличимы, то они и вычислительно неотличимы (например, для неравномерного противника), поскольку разность вероятностей α_n и β_n в множество $\{x \mid C_n(x)\}$, задаваемое тестом C_n , не превосходит статистического расстояния между α_n и β_n .

Лемма 3.1 (Свойства вычислительной неотличимости).

- 1. Отношение вычислительной неотличимости рефлексивно, симметрично и транзитивно.
- 2. Для неравномерного противника: вычислительно неотличимые последовательности случайных величин α_n и β_n вычислительно неотличимы и вероятностными тестами полиномиального размера. Это означает, что для любой последовательности T_n вероятностных схем полиномиального от n размера c l(n) входами, вероятности событий $T_n(\alpha_n) = 1$ и $T_n(\beta_n) = 1$ приблизительно равны.

- 3. Если α_n и β_n вычислительно неотличимы, а C_n последовательность вероятностных схем полиномиального размера $c\ l(n)$ входами, то и случайные величины $C_n(\alpha_n)$ и $C_n(\beta_n)$ вычислительно неотличимы. Аналогично для равномерного противника.
- 4. Пусть случайные величины α_n , β_n и γ_n имеют совместное распределение. И пусть для любой последовательности значений c_n случайной величины γ_n случайные величины $(\alpha_n \mid \gamma_n = c_n)$ и $(\beta_n \mid \gamma_n = c_n)$ вычислительно неотличимы. Тогда и $\alpha_n \gamma_n$ и $\beta_n \gamma_n$ вычислительно неотличимы.

Для равномерного противника это свойство справедливо только для независимых случайных величин α_n , γ_n , причём случайная величина должны быть полиномиально моделируемой.

Доказательство.

- 1-2. Очевидно.
 - 3. Пусть дана последовательность тестов T_n позволяет отличать $C_n(\alpha_n)$ и $C_n(\beta_n)$. Тогда последовательность схем $D_n(x) = T_n(C_n(x))$ будет вероятностным тестом полиномального размера для случайных величин α_n и β_n .

4. (Задача в ДЗ)

3.2. Генераторы псевдослучайных чисел

Определение 3.3. Пусть даны многочлены k(n) и l(n) такие, что l(n) > k(n) для всех n. Генератором псевдослучайных чисел типа $k(n) \to l(n)$ будем называть семейство функций $G_n: \{0,1\}^{k(n)} \to \{0,1\}^{l(n)}$, удовлетворяющее следующим условиям.

- 1. Семейство G_n вычислимо за полиномиальное от n время.
- 2. (Надежность генератора ПСЧ.) Случайная величина $G_n(s)$ для равномерного случайного s вычислительно неотличима от случайной величины равномерно распределенной на всех словах длины l(n).

Определение 3.4. Генератор псевдослучайных чисел типа $k(n) \to \infty$ будем называть семейство отображений $G_n: \{0,1\}^{k(n)} \to \{0,1\}^*$, удовлетворяющее следующим требованиям.

- 1. Существует алгоритм, который по слову s и натуральному числу l вычисляет элемент последовательности $G_n(s)$ с номером l за время, полиномиальное от |s|+l.
- 2. Случайная величина $G_n(s)$ вычислительно неотличима от равномерно распределённой бесконечной последовательности нулей и единиц. (Это означает, что для любого полинома p(n) первые p(n) битов $G_n(s)$ вычислительно неотличимы от случайной величины равномерно распределённой на всех словах длины p(n).)

Замечание 3.2. По генератору ПСЧ типа $k(n) \to \infty$ можно построить генератор ПСЧ типа $k(n) \to l(n)$ для любого полинома l(n) (нужно взять первый l(n) битов).

Список литературы

- [1] Н.К. Верещагин. *Курс лекций "Теоретико-сложностные проблемы криптографии"*, МГУ, http://lpcs.math.msu.su/~ver/teaching/cryptography/index.html.
- [2] Д.М. Ицыксон. *Курс "Теоретико-сложностные основы криптографии"*, CS центр, https://compsciclub.ru/courses/cryptography-foundations/2016-spring/.
- [3] O. Goldreich. Foundations of cryptography.
- [4] J. Håstad, R. Impagliazzo, L.A. Levin, M. Luby. A Pseudorandom Generator from any One-way Function. SIAM J. Comput. 28, 4 (March 1999), 1364-1396.
 DOI: https://doi.org/10.1137/S0097539793244708
- [5] J. Katz, Y. Lindell. Introduction to Modern Cryptography.

Todo list