
Contents

10 Computational complexity of parsing 2
10.1 Parsing with shallow logical dependencies . 2

10.1.1 Height of a parse tree . 2
10.1.2 Recognition in space (log n)2 . 3
10.1.3 Recognition by a circuit of depth (log n)2 5

10.4 Linear grammars and logarithmic space . 6
10.4.1 Uniform membership problem for linear grammars 6
10.4.2 A complete problem for nondeterministic logarithmic space 6
10.4.3 An NLOGSPACE-complete linear language 7
10.4.4 Deterministic linear grammars . 7

10.5 Polynomial-time completeness . 7
10.5.1 The circuit value problem . 7
10.5.2 Uniform membership problem for ordinary grammars 8
10.5.3 Conjunctive grammar for a P-complete language 9

10.7 Representation of the polynomial time by first-order grammars 9

Bibliography 12

Name index 13

1

Chapter 10

Computational complexity of parsing

10.1 Parsing with shallow logical dependencies

This section describes two parsing methods for ordinary grammars, which are both based
on the same underlying idea of using an augmented deduction system that allows shallow proof
trees. Using this idea, one can construct a recognition procedure that uses only O((log n)2) bits of
memory, at the expense of running time nO(logn), which is super-polynomial: this is the algorithm
by Lewis, Stearns and Hartmanis [9]. Another application of the same idea, independently
discovered by Brent and Goldschlager [1] and by Rytter [13], is a parallel algorithm that works
in time O((log n)2) using O(n6) processing units.

10.1.1 Height of a parse tree

Height of logical dependencies. In some grammars, may be as low as logarithmic. For
instance, the following highly ambiguous grammar describing the language a+ has, for each
string an, a parse tree of height log n (as well as other parse trees of height up to n).

S → SS | a

Achieved by concatenating long strings.
The worst case is linear concatenation, for which the parse tree is always of linear height. In

particular, the following ultimately simple grammar for the language a∗ can be regarded as the
worst case with respect to the height of parse tree.

S → aS | ε

The goal is to replace ordinary parse trees with an equivalent system of logical dependencies,
in which the height will be bounded by a logarithmic function.

A proposition A
D (u : v), with A,D ∈ N and u, v ∈ Σ∗, means that there exists a parse tree

with a root A ∈ N , with a gap represented by a node labelled D without descendants, and with
|u| + |v| descendants labelled u and v, to the right and to the left of D, respectively. Extra
deduction rules:

X1(u1), Xi−1(ui−1), Xi+1(ui+1), X`(u`) `
A

Xi
(u1 . . . ui−1 :ui+1 . . . u`) (creating a gap for A→ X1 . . . X` ∈ R)

A

D
(u : v), D(w) ` A(uwv) (filling the gap)

A

E
(u : v),

E

D
(x : y) ` A

D
(ux : yv) (combining conditional propositions)

2

Computational complexity of parsing 3

For example, if a grammar is in the Chomsky normal form, then the deduction rules for
simulating a gap have the following form, for each rule A→ BC ∈ R.

B(u) ` A
C

(u : ε) (creating a gap on the right)

C(v) ` A
B

(ε : v) (creating a gap on the left)

It is claimed that:

1. whatever can be proved in this extended system, can be proved in the main system using
only propositions of the form A(w);

2. every proposition A
D (u : v) orD(w) has a proof of height O(log n), where n = |uv| or n = |w|

is the number of leaves.

The latter statement is established using the following property.

Lemma 10.1. Let G = (Σ, N,R, S) be an ordinary grammar in Chomsky’s normal form. Then
every parse tree with n leaves contains a middle node that spans over more than 1

3n and at most
2
3n leaves.

Proof. By constructing a path from the root, choosing the largest of two subtrees at each node.
This is done while the current subtree has more than 2

3n leaves; the first node that has at most
2
3n leaves is bound to have more than 1

3n leaves due to binary branching.

Example 10.1. Consider the usual grammar for the language { anbn | n > 0}.

S → aSb | ε

The parse tree for the string w = a8b8 is given in Figure 10.1. The next Figure 10.2 illustrates a
shallow proof of the same proposition S(aaaaaaaa bbbbbbbb). The last step of this shallow proof
is

S

S
(a4 : b4), S(a4b4) ` S(a8b8).

In Figure 10.1, it is shown as the subtree with a hole representing S
S (a4 : b4) (a combination of

the grey area) and the regular subtree representing S(a4b4).

10.1.2 Recognition in space (log n)2

An algorithm by Lewis, Stearns and Hartmanis [9]. The original implementation used a
sequential program with arrays simulating stack memory. Presented here using recursion.

Theorem 10.1. For every ordinary grammar G in the Chomsky normal form, the algorithm
correctly determines whether a given string of length n is in L(G). Its depth of recursion is
O(log n) and each stack frame uses O(log n) bits, to the total of O((log n)2) bits. The running
time is nO(logn).

Each procedure tries all possibilities of deducing the proposition. The running time is super-
polynomial, because the same propositions are reproved multiple times; the algorithm lacks
memory to remember any intermediate results. The next subsection shows essentially the same
computations implemented on an entirely different model of computation, which does not have
memory restrictions.

4 A. Okhotin, “Formal grammars” (chapter 10 draft, October 2, 2014)

Algorithm 10.1 Recognizing ordinary languages in space (log n)2

Let G = (Σ, N,R, S) be an ordinary grammar in the Chomsky normal form. Let w = a1 . . . an,
with n > 1 and ai ∈ Σ, be an input string. The algorithm is comprised of the following recursive
procedures:

• for each A ∈ N , the procedure A(i, j) tests whether A(ai+1 . . . aj) has a proof of height at
most log3/2(j − i) in the extended deduction system, and returns true or false;

• for all A,D ∈ N , the procedure A
D (i, k, `, j) tests whether A

D (ai+1 . . . ak : a`+1 . . . aj) can be
proved in this system with height at most log3/2(k − i+ j − `), returns true or false;

Then the membership of w in L(G) is determined by a call S(0, n).
procedure A(i, j)

1: if i+ 1 = j ∧ A→ aj ∈ R then
2: return true
3: for all k, `: i 6 k 6 ` 6 j, `− k ∈

(
1
3(j − i), 2

3(j − i)
]
do /* the middle node */

4: for all D ∈ N do
5: if A

D (i, k, `, j) ∧ D(k, `) then /* filling a gap */
6: return true
7: return false
procedure A

D (i, k, `, j)

1: if ` = j then
2: for all A→ BD ∈ R do
3: if B(i, k) then /* creating a gap on the right */
4: return true
5: if i = k then
6: for all A→ DC ∈ R do
7: if C(`, j) then /* creating a gap on the left */
8: return true
9: for all s, t: i 6 s 6 k, ` 6 t 6 j, (s−i)+(j−t), (k−s)+(t−`) ∈

(
1
3(k−i+j−`), 2

3(k−i+j−`)
]

do /* the middle node */
10: for all E ∈ N do
11: if A

E (i, s, t, j) ∧ E
D (s, k, `, t) then /* combining */

12: return true
13: return false

Computational complexity of parsing 5

S→εa1 a2 a3 a4 a5 a6 a7 a8 b8 b7 b6 b5 b4 b3 b2 b1

S

S

S

S

S

S

S

S

Figure 10.1: A parse tree for the string a8b8 according to the grammar in Example 10.1: sym-
bols are marked with numbers as a1 . . . a8b8 . . . b1; the grey area marks the subtree with a hole
represented by the conditional proposition S

S (a1 . . . a4 : b4 . . . b1).

10.1.3 Recognition by a circuit of depth (log n)2

The existence of a recognizer circuit of depth (log n)2 with polynomially many gates was first
discovered by Ruzzo [12]. The Brent–Goldschlager–Rytter algorithm, given independently by
Brent and Goldschlager [1] and by Rytter [13], constructs such a circuit with O(n6) gates.

This algorithm came unforeseen: Cook [3] wrote “I see no way of showing DCFL ⊆ NC”
(where DCFL denotes the class of deterministic languages).

Theorem 10.2 (Ruzzo [12], Brent and Goldschlager [1]; Rytter [13]). For every ordinary gram-
mar G = (Σ, N,R, S) in the Chomsky normal form and for every number n > 1, there is a
Boolean circuit of depth O(log n), which has |Σ| · n inputs to read a string w = a1 . . . an with
ai ∈ Σ, O(n6) intermediate Boolean gates, and one output to report whether w is in L(G).

For each grammar, there is a logarithmic-space Turing machine, which, given a number n,
prints this circuit.

The circuit contains the following gates:

• for all i, j with 0 6 i < j 6 n, a gate xA,i,j , which computes the truth value of A(ai+1 . . . aj),
that is, whether the substring ai+1 . . . aj is in LG(A).

• yA,i,j,D,k,` with A,D ∈ N , 0 6 i 6 k < ` 6 j 6 n and (k − i) + (j − `) > 0. Such
a gate represents a parse tree of ai+1 . . . aj from A with a hole instead of a subtree of
ak+1 . . . a` from D, so that it evaluates to true if and only if the conditional proposition
A
D (ai+1 . . . ak : a`+1 . . . aj) is true.

6 A. Okhotin, “Formal grammars” (chapter 10 draft, October 2, 2014)

S(a1...a8b8...b1)

S–S (a1...a4 : b4...b1)

S–S (a1a2 : b2b1) S–S (a3a4 : b4b3)

S–S (a1:b1) S–S (a2:b2) S–S (a3:b3) S–S (a4:b4) S–S (a5:b5) S–S (a6:b6) S–S (a7:b7)

S(a5...a8b8...b5)

S–S (a5a6 : b6b5) S(a7a8b8b7)

a b a b a b a b a b a b a b

S(a8b8)

S–S (a8:b8)

a b

S(ε)

Figure 10.2: A shallow proof for the string a8b8 according to the grammar in Example 10.1;
symbols are marked with numbers as a1 . . . a8b8 . . . b1.

Research problems

10.1.1. Reconstruct the circuit in Theorem 10.2 to use o(n6) gates, and generally as few gates as
possible, while maintaining depth O((log n)2). Brent and Goldschlager [1] conjectured that
the circuit could be reconstructed by embedding a subcircuit implementing fast Boolean
matrix multiplication. This would require a careful analysis of the original circuit with
Θ(n6) gates, as well as of any subcircuit implementing matrix multiplication.

10.4 Linear grammars and logarithmic space

Computational complexity class NLOGSPACE (also called NL): problems solvable on a non-
deterministic two-tape Turing machine, with a read-only input tape containing an input string
of length n, and with a work tape of size log2 n.

10.4.1 Uniform membership problem for linear grammars

Definition 10.1. The uniform membership problem for a family of grammars G: “Given a
grammar G ∈ G and a string w ∈ Σ∗, where Σ is the alphabet, over which G is defined, determine
whether w is in L(G)”.

Theorem 10.3. The uniform membership problem for linear grammars is in NLOGSPACE.

10.4.2 A complete problem for nondeterministic logarithmic space

Complete problems for NLOGSPACE are defined with respect to reductions made by uni-
formly generated circuits of depth log2 n, called NC1 reductions.

Computational complexity of parsing 7

Reachability in a directed ordered graph: given a graph with a set of vertices {1, . . . , n} and
with a set of arcs (i, j), with i < j, determine whether there is a directed path from vertex 1 to
vertex n.

Is NLOGSPACE-complete.

10.4.3 An NLOGSPACE-complete linear language

Theorem 10.4 (Sudborough [14]). For every language L ⊆ Σ∗ over an alphabet Σ, with [,],# /∈
Σ, define the corresponding language f(L) ⊆ (Σ ∪ {[,],#})∗ as follows.

f(L) =
{
[w1,1# . . .#w1,k1] . . . [wm,1# . . .#wm,km]

∣∣ ∃i1, . . . , im : w1,i1w2,i2 . . . wm,im ∈ L
}
.

Let L0 = {w$wR |w ∈ {a, b}∗}. Then the language f(L0) is generated by a linear grammar and
is NLOGSPACE-complete.

In a string belonging to the language f(L), each block delimited by square brackets lists one
or more choices of substrings, and for some set of choices (i1, . . . , im), the concatenation of these
substrings must belong to L.

Reduction from the graph reachability problem.
Given an acyclic graph with n nodes {1, . . . , n} and a set of arcs E, where (i, j) ∈ E implies

i < j, construct the following string.

[a1b]
n∏
i=1

(
[
(∏
j:(i,j)∈E

#aibajb
)
]
)
[anb$][#banban][#ban−1ban−1] . . . [#ba1ba1]

For this string to belong to the language f(L0), for some choices of substrings at each block
delimited by square brackets, the concatenation of these choices must be a string of the form
w$w, with w ∈ {a, b}. The first block gives no alternative: the string must begin with a1b.
Therefore, it must end with ba1, and this can only be achieved if the substring ba1ba1 is chosen
in the last block (the alternative there would be to choose the empty string). This in turn forces
the left part of the string to continue with a1b, which choosing one of the arcs (1, j) ∈ E and
taking the alternative a1bajb in the second block. At the moment, the string has the following
form.

a1ba1bajb . . . ba
1ba1

Next, the right part of the string should have bajbaj , and therefore the right part must continue
with an arc from j to some node, etc., etc. This construction ends with an inner substring anb$,
which indicates the end of the path in the node an.

Example:

[a1b][#a1ba2b#a1ba3b][#a2ba3b#a2ba4b][#a3ba4b][a4b$][#ba4ba4][#ba3ba3][#ba2ba2][#ba1ba1]

10.4.4 Deterministic linear grammars

LR(1) linear grammars have a DLOGSPACE-complete uniform membership problem. Holzer
and Lange [5] constructed an LR(1) linear grammar that defines a DLOGSPACE-complete lan-
guage.

10.5 Polynomial-time completeness

10.5.1 The circuit value problem

Problems complete for the polynomial time (P-complete problems) are defined with respect
to logarithmic-space reductions.

8 A. Okhotin, “Formal grammars” (chapter 10 draft, October 2, 2014)

The basic P-complete problem is the problem of testing whether a given Boolean circuit with
no inputs and a single output calculates the value 1, known as the Circuit Value Problem (CVP),
defined by Ladner [8].

Such a circuit is given as a finite collection of gate definitions, where the first two gates are

C0 = 0,

C1 = 1,

and each of the subsequent gates C2, . . . , Cn is defined as a conjunction or a disjunction of any
two earlier gates,

Ci = Cj ∨ Ck (i > 2; j, k < i)

Ci = Cj ∧ Ck (i > 2; j, k < i)

or as a negation of any single earlier gate:

Ci = ¬Cj (i > 2; j < i)

The question is, whether the last of these gates evaluates to 1.
A special case of this problem is the Monotone Circuit Value Problem (MCVP), due to

Goldschlager [4], in which the input circuit does not use any negation gates. This problem is
remains P-complete.

Theorem 10.5 (Ladner [8], with improvements by Goldschlager [4]). For every Turing machine
M with an input alphabet Σ running in polynomial time, there exists a logarithmic-space deter-
ministic transducer TM , which, given an input string w ∈ Σ∗, produces such a monotone circuit
TM (w) = (C0, C1, . . . , Cm), that Cm evaluates to 1 if and only if M accepts w.

10.5.2 Uniform membership problem for ordinary grammars

“Given a grammar G and a string w ∈ Σ∗, determine whether w ∈ L(G)”. Is P-complete for
Boolean grammars, remains P-complete for LL(1) ordinary grammars. Remains P-complete for
w fixed to ε.

Theorem 10.6. P-hard.

Proof. Reduction from MCVP.
Given a circuit C0, C1, . . . , Cn, construct a grammar G = (Σ, N,R, S), where the alphabet Σ

can be anything (for instance, let Σ = {a}), each gate Ci is represented by a nonterminal symbol
Ai, the initial symbol S = An represents the output gate, and the rules are defined as follows.

A0 → A0 (for C0 = 0)

A1 → ε (for C1 = 1)

Ai → Aj | Ak (for Ci = Cj ∨ Ck)
Ai → AjAk (for Ci = Cj ∧ Ck)

Then, ε ∈ LG(Ai) if and only if the gate Ci evaluates to 1.

Computational complexity of parsing 9

10.5.3 Conjunctive grammar for a P-complete language

An encoding of monotone circuits as strings, so that a conjunctive grammar can describe the
set of correct instances of the MCVP.

Consider a monotone circuit.

C0 = 0

C1 = 1

Ci = Cji ∨ Cki (ji, ki < i)

Ci = Cj−1 ∧ Cki (ji, ki < i)

It is defined by a sequence of triples (si, ji, ki), where si ∈ {c, d} is the operation at the i-th
gate (conjunction or disjunction), whereas ji and ki are the first and second arguments of this
operation. j2, . . . jn. An encoding of these circuits as strings over the alphabet Σ = {a, b, c, d},
where gate numbers are encoded in unary as follows.

sna
n−jn−1bn−kn−1 sn−1a

(n−1)−jn−1−1b(n−1)−kn−1−1 . . . s3a
3−j3−1b3−k3−1 s2a

2−j2−1b2−k2−1

The following conjunctive grammar generates such an encoding if and only if the circuit
evaluates to 1.

S → cES&cAFS | dES | dAFS
A→ aA | ε
B → bB | ε
E → aEXAB | B
F → bEXAB | ε
X → c | d

Further results: can have a linear conjunctive grammar for a similar language, proved by
Ibarra and Kim [6, Prop. 3.13], see a direct construction by Okhotin [10]. Also, a Boolean LL(1)
grammar.

10.7 Representation of the polynomial time by first-order gram-
mars

Representing any language recognized in polynomial time by a first-order grammar. This
result was independently obtained by Immerman [7] and by Vardi [15], and adapted to formal
grammars by Rounds [11]. The proofs by Immerman and by Vardi worked by simulating an
intermediate theoretical model (an alternating logaritmic-space Turing machine), which was
proved to be equal to the polynomial time by Chandra, Kozen and Stockmeyer [2]. The work by
all these authors is combined into the following theorem.

Theorem 10.7. For every Turing machine M over any input alphabet Σ recognizing a language
L ⊆ Σ∗ in time O(nk), there exists and can be effectively constructed a first-order grammar
G = (Σ, N, rank, 〈ϕA〉A∈N , σ), that defines the language L(M), in which the largest rank of a
predicate is 2k and no quantifiers are used.

Proof. Let Γ, with Σ ⊂ Γ, be the work alphabet of the Turing machine, let Q be its set of states,
with the initial state q0, accepting state qacc and rejecting state qrej . The transition function is
δ : Q× Γ→ Q× Γ× {−1,+1}.

10 A. Okhotin, “Formal grammars” (chapter 10 draft, October 2, 2014)

Assume that after entering the accepting state qacc, the machine moves to the leftmost square
in the state qacc. Also assume that the machine, given an input string of length n, uses time at
most (n + 1)k, rather than const · nk; this can be ensured by the speed-up theorem. Then the
machine M also uses space at most (n+ 1)k, since it does not have time to use more.

Because of this upper bound, any position on the tape (as well as and any number of a step)
can be encoded as a k-tuple (x1, . . . , xk) of positions in the input string: any such k-tuple encodes
a number

∑k
i=1 xi · (n + 1)i−1, and any integer between 0 and (n + 1)k − 1 is representable in

this way. The simulation of a Turing machine requires adding 1 to such a representation, as well
as subtracting 1 from it. In order to add 1 to (x1, . . . , xk), let ` be the least such number that
x` < n (and if there is no such number, then (x1, . . . , xk) = (n, . . . , n) is the largest representable
value, which cannot be incremented). Denote this condition by

ν`(x1, . . . , xk) = x1 = end ∧ . . . ∧ x`−1 = end ∧ x` < end

If this condition holds, then it is sufficient to replace x1, . . . , x`−1 by zeroes and add 1 to x`: that is
the number (end, . . . , end, x`, x`+1, . . . , xk) is replaced by (begin, . . . ,begin, x` + 1, x`+1, . . . , xk).

Similarly, subtracting 1 from (x1, . . . , xk) requires checking the condition

µ`(x1, . . . , xk) = x1 = begin ∧ . . . ∧ x`−1 = begin ∧ x` > begin

and then replacing x1, . . . , x`−1 by n and subtracting 1 from x`.
For every state q ∈ Q, the grammar defines a predicate Aq(x1, . . . , xk, y1, . . . , yk), which

states that at the time (x1, . . . , xk) the Turing machine was in the state q, and its head was in
the position (y1, . . . , yk) on the tape. Another predicate Ca(x1, . . . , xk, y1, . . . , yk), defined for
each symbol a ∈ Γ writeable on the work tape, states that at the time (x1, . . . , xk), the square
number (y1, . . . , yk) on the tape contained the symbol a.

The predicate Aq(x1, . . . , xk, y1, . . . , yk) is defined by the following disjunction of three con-
ditions: if at the time (x1, . . . , xk) the machine is in the state q in position (y1, . . . , yk), then

• either it has just moved from the left,

• or it has moved there from the right,

• or this is the initial configuration, that is, (x1, . . . , xk) is the first step of the computation,
(y1, . . . , yk) is first position of the tape, and q is the initial state.

Aq(x1, . . . , xk, y1, . . . , yk) =
(∨

q′∈Q, a,a′∈Γ:
δ(q′,a′)=(q,a,+1)

k∨
`=1

k∨
`′=1

µ`(x1, . . . , xk) ∧ µ`′(y1, . . . , yk)∧

∧Aq′(end, . . . , end, x` − 1, x`+1, . . . , xk, end, . . . , end, y`′ − 1, y`′+1, . . . , yk)∧

∧ Ca′(end, . . . , end, x` − 1, x`+1, . . . , xk, end, . . . , end, y`′ − 1, y`′+1, . . . , yk)
)

∨
(∨

q′∈Q, a,a′∈Γ:
δ(q′,a′)=(q,a,−1)

k∨
`=1

k∨
`′=1

µ`(x1, . . . , xk) ∧ ν`′(y1, . . . , yk)∧

∧Aq′(end, . . . , end, x` − 1, x`+1, . . . , xk,begin, . . . ,begin, y`′ + 1, y`′+1, . . . , yk)∧

∧ Ca′(end, . . . , end, x` − 1, x`+1, . . . , xk, begin, . . . ,begin, y`′ + 1, y`′+1, . . . , yk)
)

∨
(
x1 = begin ∧ . . . ∧ xk = begin ∧ y1 = begin ∧ . . . ∧ yk = begin

)︸ ︷︷ ︸
only if q = q0

Turning to the other predicate Ca(x1, . . . , xk, y1, . . . , yk), at the time (x1, . . . , xk) there is a
symbol a in the position (y1, . . . , yk), if

Computational complexity of parsing 11

• either it has just been written there,

• or it was there at the previous step, whereas the head was elsewhere,

• or this is the initial configuration, that is, (x1, . . . , xk) is the first step of the computation,
there are input symbols in the first n squares of the tape, and the rest of the squares are
filled with spaces.

A predicate for testing whether the initial configuration of the Turing machine contains a
symbol a in a given position (y1, . . . , yk).

inita(y1, . . . , yk) =
(
y1 < end ∧ y2 = begin ∧ . . . ∧ yk = begin ∧ a(y1)

)︸ ︷︷ ︸
if a ∈ Σ

∨
(
y1 = end ∨ y2 > begin ∨ . . . ∨ yk > begin

)︸ ︷︷ ︸
only if a = ␣

(defined as false for a /∈ Σ ∪ {␣})
Auxiliary predicates:

←−
D(x1, . . . , xk, y1, . . . , yk) means that at the time (x1, . . . , xk) the

head of the Turing machine was somewhere to the left of the position (y1, . . . , yk); and
−→
D(x1, . . . , xk, y1, . . . , yk) means that it was somewhere to the right.

←−
D(x1, . . . , xk, y1, . . . , yk) =

k∨
`=1

µ`(y1, . . . , yk) ∧
(←−
D(x1, . . . , xk, end, . . . , end, y` − 1, y`+1, . . . , yk)∨

∨
∨
q∈Q

Aq(x1, . . . , xk, end, . . . , end, y` − 1, y`+1, . . . , yk)

Ca′(x1, . . . , xk, y1, . . . , yk) =
(∨

q,q′∈Q, a∈Γ:
δ(q,a)=(q′,a′,±1)

k∨
`=1

µ`(x1, . . . , xk)∧

∧Aq(end, . . . , end, x` − 1, x`+1, . . . , xk, y1, . . . , yk)∧

∧ Ca(end, . . . , end, x` − 1, x`+1, . . . , xk, y1, . . . , yk)
)

∨
(k∨
`=1

µ`(x1, . . . , xk) ∧
(←−
D(end, . . . , end, x` − 1, x`+1, . . . , xk, y1, . . . , yk)∨

∨
−→
D(end, . . . , end, x` − 1, x`+1, . . . , xk, y1, . . . , yk)

))
∨
(
x1 = begin ∧ . . . ∧ xk = begin ∧ inita′(y1, . . . , yk)

)
Finally, the initial formula expresses the condition that at some step of the computation

(x1, . . . , xk), the head is at the first square of the tape (k times begin), and the machine is in
the state qacc.

σ = (∃x1) . . . (∃xk)Aqacc(x1, . . . , xk,begin, . . . ,begin︸ ︷︷ ︸
k

)

Corollary 10.1 (Chandra, Kozen and Stockmeyer [2]; Immerman [7]; Vardi [15]; Rounds [11]).
A language is defined by a first-order grammar if and only if it is recognized by a Turing machine
in polynomial time.

Corollary 10.2. The uniform membership problem for first-order grammars is not decidable in
polynomial time.

Bibliography

[1] R. P. Brent, L. M. Goldschlager, “A parallel algorithm for context-free parsing”, Australian
Computer Science Communications, 6:7 (1984), 7.1–7.10.

[2] A. K. Chandra, D. Kozen, L. J. Stockmeyer, “Alternation”, Journal of the ACM, 28:1 (1981),
114–133.

[3] S. A. Cook, “Deterministic CFL’s are accepted simultaneously in polynomial time and log
squared space”, 11th Annual ACM Symposium on Theory of Computing (STOC 1979, April
30–May 2, 1979, Atlanta, Georgia, USA), 338–345.

[4] L. M. Goldschlager, “The monotone and planar circuit value problems are log space complete
for P”, SIGACT News, 9:2 (1977), 25–29.

[5] M. Holzer, K.-J. Lange, “On the complexities of linear LL(1) and LR(1) grammars”, Fun-
damentals of Computation Theory (FCT 1993, Hungary, August 23–27, 1993), LNCS 710,
299–308.

[6] O. H. Ibarra, S. M. Kim, “Characterizations and computational complexity of systolic trellis
automata”, Theoretical Computer Science, 29 (1984), 123–153.

[7] N. Immerman, “Relational queries computable in polynomial time”, Information and Con-
trol, 68:1–3 (1986), 86–104.

[8] R. E. Ladner, “The circuit value problem is log space complete for P”, SIGACT News, 7:1
(1975), 18–20.

[9] P. M. Lewis II, R. E. Stearns, J. Hartmanis, “Memory bounds for recognition of context-free
and context-sensitive languages”, IEEE Conference Record on Switching Circuit Theory and
Logical Design, 1965, 191–202.

[10] A. Okhotin, “A simple P-complete problem and its language-theoretic representations”, The-
oretical Computer Science, 412:1–2 (2011), 68–82.

[11] W. C. Rounds, “LFP: A logic for linguistic descriptions and an analysis of its complexity”,
Computational Linguistics, 14:4 (1988), 1–9.

[12] W. L. Ruzzo, “Tree-size bounded alternation”, Journal of Computer and System Sciences,
21:2 (1980), 218–235.

[13] W. Rytter, “On the recognition of context-free languages”, Fundamentals of Computation
Theory (FCT 1985, Cottbus, Germany), LNCS 208, 315–322.

[14] I. H. Sudborough, “A note on tape-bounded complexity classes and linear context-free lan-
guages”, Journal of the ACM, 22:4 (1975), 499–500.

[15] M. Y. Vardi, “The complexity of relational query languages”, STOC 1982, 137–146.

12

http://doi.acm.org/10.1145/322234.322243
http://dx.doi.org/10.1145/800135.804426
http://dx.doi.org/10.1145/800135.804426
http://dx.doi.org/10.1145/1008354.1008356
http://dx.doi.org/10.1145/1008354.1008356
http://dx.doi.org/10.1007/3-540-57163-9_25
http://dx.doi.org/10.1016/0304-3975(84)90015-X
http://dx.doi.org/10.1016/0304-3975(84)90015-X
http://dx.doi.org/10.1016/S0019-9958(86)80029-8
http://dx.doi.org/10.1145/990518.990519
http://dx.doi.org/10.1109/FOCS.1965.14
http://dx.doi.org/10.1109/FOCS.1965.14
http://dx.doi.org/10.1016/j.tcs.2010.09.015
http://dx.doi.org/10.1016/0022-0000(80)90036-7
http://dx.doi.org/10.1007/3-540-16066-3_26
http://dx.doi.org/10.1145/321906.321913
http://dx.doi.org/10.1145/321906.321913
http://doi.ieeecomputersociety.org/10.1109/SFCS.1981.18

Index

Brent, Richard Peirce (b. 1946), 2, 5

Chandra, Ashok K. (b. 1948), 9, 11
Cook, Stephen Arthur (b. 1939), 5

Goldschlager, Leslie Michael, 2, 5, 8

Hartmanis, Juris (b. 1928), 2, 3
Holzer, Markus, 7

Ibarra, Oscar H. (b. 1941), 9
Immerman, Neil (b. 1953), 9, 11

Kim, Sam M., 9
Kozen, Dexter Campbell (b. 1951), 9, 11

Ladner, Richard Emil, 8
Lange, Klaus-Jörn, 7
Lewis, Philip M. II (b. 1931), 2, 3

Okhotin, Alexander (b. 1978), 9

Ruzzo, Walter Larry, 5
Rytter, Wojciech (b. 1948), 2, 5

Stearns, Richard Edwin (b. 1936), 2, 3
Stockmeyer, Larry Joseph (1948–2004), 9, 11
Sudborough, Ivan Hal (b. 1943), 7

Vardi, Moshe Ya’akov (b. 1954), 9, 11

13

	Computational complexity of parsing
	Parsing with shallow logical dependencies
	Height of a parse tree
	Recognition in space (logn)2
	Recognition by a circuit of depth (logn)2

	Linear grammars and logarithmic space
	Uniform membership problem for linear grammars
	A complete problem for nondeterministic logarithmic space
	An NLOGSPACE-complete linear language
	Deterministic linear grammars

	Polynomial-time completeness
	The circuit value problem
	Uniform membership problem for ordinary grammars
	Conjunctive grammar for a P-complete language

	Representation of the polynomial time by first-order grammars

	Bibliography
	Name index

