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Chapter 11

Decision problems for grammars

11.1 Computation histories of a Turing machine

11.1.1 Computation histories of Turing machines

There exists an important general method for proving undecidability results for various kinds
of formal grammars. This method, discovered by Hartmanis [7], is based on representing the
language of computation histories of a Turing machine by a grammar. Improved by Baker and
Book [1] to use linear grammars.

Consider a Turing machine that accepts by halting, defined over some input alphabet Σ. At
every moment of its computation, the machine’s configuration is comprised of all symbols on the
tape, the position of the head and the current internal state. These data can be written as a
string over a suitable alphabet. The computation history of the machine on a given input is a
string obtained roughly by concatenating string representations of the machine’s configurations
at each step of its computation on this input. If the machine eventually halts, this is a finite
string, and the set of all such strings representing halting computations is the language of valid
accepting computations, commonly denoted by VALC(T ), where T is a Turing machine.

Let T = (Σ,Γ, Q, q0, δ, qacc) be a deterministic Turing machine, where Γ ⊃ Σ be the tape
alphabet of T , which contains a blank symbol ␣ ∈ Γ \Σ, and Q be the set of states, disjoint with
Γ. Assume that T operates on a one-sided infinite tape and never attempts to move beyond its
leftmost symbol. Initially, the tape contains the input string followed by infinitely many squares
filled with blank symbols, the machine scans its leftmost symbol and is in the initial state q0 ∈ Q.
The machine accepts by entering the state qacc.

Let Ω = Γ∪Q∪{#, $} be the alphabet used for representing computation histories. Whenever
T is in a state q ∈ Q scanning a symbol a ∈ Γ, and its tape contains a string u ∈ Γ∗ to the left
of the head and a string v ∈ Γ∗ to the right (excluding the blank symbols that have not yet been
visited), this configuration can be encoded by the string uqav ∈ Γ∗QΓ+. For every input string
w ∈ Σ∗, denote the machine’s configuration after i steps of computation by

Ci = Ci(T,w) = uqav.

If T halts on w after n steps, then its computation history is

CT (w) = w#C0#C1#C2# . . .#Cn−1$Cn#CRn #CRn−1# . . .#CR2 #CR1 #CR0 .

The language of computation histories of T is

VALC(T ) = {CT (w) | w ∈ L(T )}

Lemma 11.1. For every Turing machine T there exists and can be effectively constructed such
LL(1) linear grammars G1 and G2, that L(G1) ∩ L(G2) = VALC(T ).
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Figure 11.1: Representing VALC(T ) = {CT (w) | w ∈ L(T )} as L(G1) ∩ L(G2), for LL(1) linear
grammars G1 and G2.

Proof. The form of computation histories and their representation as an intersection of two
languages is illustrated in Figure 11.1. Each configuration is listed in the computation history
twice, and the first grammar compares the first reversed copy of each i-th configuration CRi to
the second copy of the next configuration Ci+1. The last configuration CRn is preceded by a
special symbol $, which instructs the grammar that instead of comparing the next configuration
to another, it should ensure that it is accepting. The second grammar only verifies that both
copies of each configuration are identical.

The first grammar begins by comparing the input string w written in the beginning of the
computation history to the reversed first configuration CR0 = wq0 in the very end.

S1 → Bq0

B → aBa (a ∈ Σ)

B → #A#

Next, the nonterminal A is used to compare each configuration Ci on the left to the reversed next
configuration CRi+1 on the right, in order to ensure that these are indeed consecutive configurations
of T . The grammar first matches the symbols in the unchanged portion of the tape.

A→ cAc (c ∈ Γ)

When the head and the state of the Turing machine are encountered in the configuration Ci
on the left, as a substring of the form bqa, with b, a ∈ Γ and q ∈ Q, the grammar matches
them to the corresponding symbols in the next configurations Ci+1, which are determined by the
machine’s transition function. Let δ : Q × Γ → Q × Γ × {−1,+1} be the transition function of
T , where δ(q, a) determines the behaviour of T in a state q ∈ Q when observing a symbol a ∈ Σ:
the machine enters a given new state, overwrites a with a given new symbol and moves the head
in a given direction.

Consider first the case of transition to the left, and let δ(q, a) = (q′, a′,−1). Then, a configura-
tion Ci = ubqav is followed by Ci+1 = uq′ba′v, which is written backwards as CRi+1 = vRa′bq′uR.
The corresponding rule of the grammar puts the substrings bqa and a′bq′ at the two sides of the
string.

A→ bqaAa′bq′ (δ(q, a) = (q′, a′,−1), b ∈ Γ)

If the machine uses a transition δ(q, a) = (q′, a′,+1) to change from a configuration Ci = uqacv
to Ci+1 = ua′q′cv (written as CRi+1 = vRcq′a′uR), the grammar puts aq and a′q′ around the
string.

A→ qaAq′a′ (δ(q, a) = (q′, a′,+1)).

The rest of the symbols in Ci are compared to their counterparts in CRi+1 by the rule A→ cAc.
Once all symbols in these configurations are generated, the grammar proceeds either to the next
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pair of configurations or to an accepting configuration.

A→ #A#

A→ $C#

A special case of a transition between two configurations is when the Turing machine moves
beyond the rightmost symbol of the tape. In this case, Ci = uq, and a missing symbol under q
is treated as a blank symbol.

A→ bq#A#a′bq′ (δ(q, ␣) = (q′, a′,−1), b ∈ Γ)

A→ bq$C#a′bq′ (δ(q, ␣) = (q′, a′,−1), b ∈ Γ)

A→ q#A#q′a′ (δ(q, ␣) = (q′, a′,+1))

A→ q$C#q′a′ (δ(q, ␣) = (q′, a′,+1))

Finally, the grammar has to check that the last configuration CRn is accepting. This is done
in the symbol C.

C → cC (c ∈ Γ)

C → qAccC

C → ε.

The grammar, as defined above, is LL(3). Indeed, each rule of the form B → bqaBa′bq′ is
completely determined by the transition of the Turing machine in the state q by the symbol a,
and in order to distinguish between several such rules, a parser needs to see both q and a. This
requires a three-symbol look-ahead.

An LL(1) grammar is obtained by reconstructing the rules for A, so that the required three
symbols of look-ahead are accummulated in A’s subscripts. Consider new nonterminal symbols
Ab, with b ∈ Γ, Ab,q, with b ∈ Γ∪{ε} and q ∈ Q, and Aq,a, with q ∈ Q and a ∈ Σ. The intention
is to have L(Ab) = {u |bu ∈ L(A)}, L(Ab,q) = {u |bqu ∈ L(A)} and L(Aq,a) = {u |qau ∈ L(A)}.
This is achieved by the rules below that replace all rules for A.

A→ qAε,q (q ∈ Q)

A→ bAb (b ∈ Γ)

Ab → qAb,q (b ∈ Q, q ∈ Q)

Ab′ → b′Abb (b, b′ ∈ Γ)

Ab,q → aAa′bq′ (δ(q, a) = (q′, a′,−1), b ∈ Γ)

Ab,q → #A#a′bq′ (δ(q, ␣) = (q′, a′,−1))

Ab,q → $C#a′bq′ (δ(q, ␣) = (q′, a′,−1))

Ab,q → aAq′a′b (δ(q, a) = (q′, a′,+1))

Ab,q → #A#q′a′b (δ(q, ␣) = (q′, a′,+1))

Ab,q → $C#q′a′b (δ(q, ␣) = (q′, a′,+1))

Ab → #A#b (b ∈ Γ)

A→ #A#

The second grammar simply verifies that for every configuration Ci on the left, the corre-
sponding string on the left is indeed the reversal CRi of this configuration. This is done using
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the following rules.

S2 → aS2 (a ∈ Σ)

S2 → D

D → sEs (s ∈ Γ ∪Q)

D → #D# | $E#

E → sEs (s ∈ Γ ∪Q)

E → #

Undecidable to test whether VALC(T ) is empty.

Theorem 11.1. Given two LL(1) linear grammars, G1 and G2, it is undecidable whether the
intersection L(G1) ∩ L(G2) is empty.

Theorem 11.2. It is undecidable whether a given linear grammar is unambiguous.

Proof. Given a Turing machine, construct the grammars G1 = (Σ, N1, R1, S1) and G2 =
(Σ, N2, R2, S2), as in Lemma 11.1. Let G = (Σ, N1 ∪ N2 ∪ {S}, R1 ∪ R2 ∪ R,S) be a new
grammar, which combines G1 and G2 by the following new rules.

S → S1 | S2

As the grammars G1 and G2 are unambiguous, the only possible source of ambiguity in G is the
choice between the two new rules. If VALC(T ) = ∅, then L(G1) ∩ L(G2) = ∅, and the choice
is unambiguous. And if there is a string w ∈ VALC(T ), then the choice is ambiguous on this
string w.

11.1.2 The complement of the language of computation histories

Language of computation histories VALC(T ) ⊆ Ω∗. Representable as VALC(T ) = L1 ∩ L2.
Its complement: VALC(T ) = L1 ∪ L2.

Lemma 11.2. For every Turing machine T , the complements of each of two languages defined
in Lemma 11.1 are described by LR(1) linear grammars G′1 and G′2.

Proof. The grammars G1 and G2 are LL(1), and therefore LR(1). Then, LR(1) languages are
closed under complementation.

Undecidable to test whether VALC(T ) is Σ∗.
Therefore, equivalence undecidable already for linear grammars.

Theorem 11.3. Testing whether a given linear grammar generates the set of all strings over its
alphabet is undecidable.

Proof. Given a Turing machine, let G′1 = (Σ, N1, R1, S1) and G′2 = (Σ, N2, R2, S2), be the
grammars defined in Lemma 11.2. Construct a new grammar G = (Σ, N1 ∪N2 ∪ {S}, R1 ∪R2 ∪
R,S), which combines G′1 and G′2 by the following new rules.

S → S1 | S2

The new grammar is still linear, and it describes the language Σ∗ if and only if VALC(T ) = ∅.

Corollary 11.1. Given two linear grammars, it is undecidable whether they describe the same
language

Proof. Let the second grammar generate Σ∗.
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11.2 Equivalence problem for deterministic grammars

11.2.1 Equivalence problem for LL(k) grammars

Theorem 11.4 (Rosenkrantz and Stearns [10]). Given two LL(k) ordinary grammars, it is
decidable whether these grammars describe the same language.

Sketch of a proof. Two grammars, G1 = (Σ, N1, R1, S1) and G2 = (Σ, N2, R2, S2). Assume that
both grammars are in the Greibach normal form, that is, with all rules of the form A → aα,
with a ∈ Σ and α ∈ (Σ ∪ Ni)

∗. For the sake of the uniformity of notation, also assume that
N1 ∩N2 = ∅ and denote N = N1 ∪N2 and R = R1 ∪R2.

General plan: construct a DPDA that recognizes the symmetric difference of L(G1) and
L(G2), that is, accepts those strings that are generated only by one of the two grammars. Then
test this DPDA for emptiness.

This requires simulating both LL parsers together. If their stacks contained the same number
of symbols at every step, this would be easy. However, their stacks may contain a different number
of symbols even if the grammars describe the same language.

Example 11.1. Consider the following two different LL(k) grammars, both describing the same
language { anb6n | n > 0}

S1 → aS1BB | ε
B → bbb

S2 → aS2CCC | ε
C → bb

On an input string anb6n, after reading an, the first parser has 2n symbols in its stack (B2n),
whereas the second parser has 3n symbols (C3n).

Define another notion of similarity of stack contents, so that, as long as two grammars describe
the same language, their LL parsers’ stack contents will be similar to each other at every step of
their computations.

Thickness of a stack symbol X ∈ Σ ∪ N , denoted by τ(X), is defined as the length of the
shortest string representable as X. Then, τ(a) = 1 for a ∈ Σ and τ(A) = minw∈L(A) |w|, This
notion is extended to the whole stack contents as τ(X1 . . . X`) = τ(X1) + . . .+ τ(X`).

Assume that the two grammars describe the same language, and that their parsers read the
same prefix u of the same string uv, reaching configurations (α1, v) and (α2, v), respectively.
Then, the sets of strings v accepted from these configurations must be the same, and, in partic-
ular, the shortest accepted strings have the same length.

Thickness of a symbol wrt look-ahead x ∈ Σ6k. τx(A) = minw∈L(A),Firstk(w)=x |w|. Can be
larger than τ(A).

Example 11.2. Consider the grammar S → aS | bbS | ε and its LL(1) parser. Then, τ(S) = 0,
because ε ∈ L(S), and τε(S) = 0, τa(S) = 1 and τb(S) = 2.

Let m = maxA→α∈R τ(α) be the largest thickness of a right-hand side of any rule.
Claim: τx(α)− τ(α) 6 k(m− 1), where t = maxA→α∈R τ(α).
Proof of the claim: Let α = X1 . . . X`. If w ∈ L(α) and Firstk(w) = x, then applying at most

k rules to the first symbols of α leads to w ∈ L(xβXk+1 . . . X`), for some β ∈ Σ ∪ N . Each of
the rules applied has thickness at most m, and it replaces a nonterminal symbol of thickness at
least 1. Therefore, the thickness of xβ is at most k(m− 1), leading to the desired upper bound.

τx(X1 . . . X`) 6 τ(xβXk+1 . . . X`) 6 k(m− 1) + τ(Xk+1 . . . X`) 6 k(m− 1) + τ(X1 . . . X`)

If on uv, the first parser reads u and enters configuration (α1, v), whereas the second parser
enters the configuration (α2, v). Then, τFirstk(v)(α1) = τFirstk(v)(α2). This does not guarantee
that τ(α1) = τ(α2).
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Claim: |τ(α1)− τ(α2)| 6 k(m− 1).
(follows from the previous claim)
(2) Construct a DPDA that, given an input string w ∈ Σ∗, simulates both parsers on w

at once, assuming the similarity of their stack contents, and if this similarity is ever violated,
the DPDA skips the rest of w and accepts; otherwise, the simulation continues, and if one of
the simulated parsers accepts and the other rejects, the DPDA accepts, and rejects otherwise.
Two-track simulation of both parsers, each symbol used by an LL parsr occupies a number of
stack symbols corresponding to its thickness. The k(m− 1) top symbols are kept in the internal
state.

Korenjak and Hopcroft [8] gave a different algorithm for testing equivalence of LL(1) gram-
mars in Greibach normal form, which does not use any intermediate problems. Olshansky and
Pnueli [9] extended the method of Korenjak and Hopcroft to LL(k) grammars.

The inclusion problem is undecidable already for linear LL(1) grammars.

Theorem 11.5 (Friedman [5]). Given two linear LL(1) grammars G1 and G2 in Greibach normal
form, it is undecidable to determine whether L(G1) is a subset of L(G2).

11.2.2 LR grammars

Equivalence for LR grammars was proved decidable by Sénizergues [11].
Later, alternative solutions were presented by Stirling and by Jančar.



Bibliography

[1] B. S. Baker, R. V. Book, “Reversal-bounded multipushdown machines”, Journal of Computer
and System Sciences, 8 (1974), 315–332.

[2] Y. Bar-Hillel, M. Perles, E. Shamir, “On formal properties of simple phrase-structure
grammars”, Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung, 14
(1961), 143–177.

[3] D. J. Cantor, “On the ambiguity problem of Backus systems”, Journal of the ACM, 9:4
(1962), 477–479.

[4] N. Chomsky, M. P. Schützenberger, “The algebraic theory of context-free languages”, in:
Braffort, Hirschberg (Eds.), Computer Programming and Formal Systems, North-Holland,
1963, 118–161.

[5] E. P. Friedman, “The inclusion problem for simple languages”, Theoretical Computer Science,
1:4 (1976), 297–316.

[6] S. A. Greibach, “The undecidability of the ambiguity problem for minimal linear grammars”,
Information and Control, 6:2 (1963), 119–125.

[7] J. Hartmanis, “Context-free languages and Turing machine computations”, Proceedings of
Symposia in Applied Mathematics, Vol. 19, AMS, 1967, 42–51.

[8] A. J. Korenjak, J. E. Hopcroft, “Simple deterministic languages”, 7th Annual Symposium on
Switching and Automata Theory (SWAT 1966, Berkeley, California, USA, 23–25 October
1966), IEEE Computer Society, 36–46.

[9] T. Olshansky, A. Pnueli, “A direct algorithm for checking equivalence of LL(k) grammars”,
Theoretical Computer Science, 4:3 (1977), 321–349.

[10] D. J. Rosenkrantz, R. E. Stearns, “Properties of deterministic top-down grammars”, Infor-
mation and Control, 17 (1970), 226–256.

[11] G. Sénizergues, L(A) = L(B)? decidability results from complete formal systems”, Theo-
retical Computer Science, 251:1–2 (2001), 1–166.

[12] R. E. Stearns, H. B. Hunt III, “On the equivalence and containment problems for un-
ambiguous regular expressions, regular grammars and finite automata”, SIAM Journal on
Computing, 14 (1985), 598–611.

8

http://dx.doi.org/10.1016/S0022-0000(74)80027-9
http://doi.acm.org/10.1145/321138.321145
http://dx.doi.org/10.1016/0304-3975(76)90074-8
http://dx.doi.org/10.1016/S0019-9958(63)90149-9
http://dx.doi.org/10.1109/SWAT.1966.22
http://dx.doi.org/10.1016/0304-3975(76)90074-8
http://dx.doi.org/10.1016/S0019-9958(70)90446-8
http://dx.doi.org/10.1016/S0304-3975(00)00285-1
http://dx.doi.org/10.1137/0214044
http://dx.doi.org/10.1137/0214044


Index

Baker, Brenda Sue, 2
Book, Ronald Vernon (1937–1997), 2

Friedman, Emily Perlinski, 7

Hartmanis, Juris (b. 1928), 2
Hopcroft, John Edward (b. 1939), 7

Jančar, Petr, 7

Korenjak, Allen J., 7

Olshansky, Tmima, 7

Pnueli, Amir (1941–2009), 7

Rosenkrantz, Daniel Jay (b. 1943), 6

Sénizergues, Géraud (b. 1957), 7
Stearns, Richard Edwin (b. 1936), 6
Stirling, Colin P., 7

9


	Decision problems for grammars
	Computation histories of a Turing machine
	Computation histories of Turing machines
	The complement of the language of computation histories

	Equivalence problem for deterministic grammars
	Equivalence problem for LL(k) grammars
	LR grammars


	Bibliography
	Name index

