
On optimal heuristic randomized semidecision
procedures, with applications to proof complexity and

cryptography∗

Edward A. Hirsch Dmitry Itsykson Ivan Monakhov
Alexander Smal

Steklov Institute of Mathematics at St. Petersburg

5th July 2010

Abstract

The existence of a (p-)optimal propositional proof system is a major open question
in (proof) complexity; many people conjecture that such systems do not exist. Kraj́ıček
and Pudlák [KP89] show that this question is equivalent to the existence of an algorithm
that is optimal1 on all propositional tautologies. Monroe [Mon09] recently gave a
conjecture implying that such algorithm does not exist.

We show that in the presence of errors such optimal algorithms do exist. The con-
cept is motivated by the notion of heuristic algorithms. Namely, we allow the algorithm
(called heuristic acceptor) to claim a small number of false “theorems” (according to
any polynomial-time samplable distribution on non-tautologies) and err with bounded
probability on other inputs. Our result remains valid for all recursively enumerable
languages and can also be viewed as the existence of an optimal weakly automatizable
heuristic proof system.

We also note that the existence of a co -NP-language L with polynomial-time sam-
plable distribution on L that has no polynomial-time heuristic acceptors is equivalent
to the existence of infinitely-often one-way function.

1 Introduction

Given a specific problem, does there exist the “fastest” algorithm for it? Does there exist
a proof system possessing the “shortest” proofs of the positive solutions to the problem?

∗Supported by Federal Target Programme “Scientific and scientific-pedagogical personnel of the innovative
Russia” 2009-2013 (contracts Π265 and 2010-1.5-503-007-009) and RFBR (grants 08-01-00640 and 09-01-
12066) and the president grants NSh-5282.2010.1 and MK-4089.2010.1. Work was done while the third
author was a master student in St. Petersburg Academic University supported by Yandex Fellowship.

1Recent papers [Mon09] call such algorithms p-optimal while traditionally Levin’s algorithm was called
optimal. We follow the older tradition. Also there is some mess in terminology here, thus please see formal
definitions in Sect. 2 below.

1

Although the first result in this direction was obtained by Levin [Lev73] in 1970s, these
important questions are still open for most interesting languages, for example, the language
of propositional tautologies.

Classical version of the problem. According to Cook and Reckhow [CR79], a proof
system is a polynomial-time mapping of all strings (“proofs”) onto “theorems” (elements
of certain language L; if L is the language of all propositional tautologies, the system is
called a propositional proof system). The existence of a polynomially bounded propositional
proof system (that is, a system that has a polynomial-size proof for every tautology) is
equivalent to NP = co -NP. In the context of polynomial boundedness a proof system
can be equivalently viewed as a function that given a formula and a “proof”, verifies in
polynomial time that a formula is a tautology: it must accept at least one “proof” for each
tautology (completeness) and reject all proofs for non-tautologies (soundness).

One proof system Πw is simulated by another one Πs if the shortest proofs for every
tautology in Πs are at most polynomially longer than the shortest proofs in Πw. The no-
tion of p-simulation is similar, but requires also a polynomial-time computable function for
translating the proofs from Πw to Πs. A (p-)optimal propositional proof system is one that
(p-)simulates all other propositional proof systems.

The existence of an optimal (or p-optimal) propositional proof system is a major open
question. If one would exist, it would allow to reduce the NP vs co -NP question to proving
proof size bounds for just one proof system. It would also imply the existence of a complete
disjoint NP pair [Raz94, Pud03]. Kraj́ıček and Pudlák [KP89] show that the existence of
a p-optimal system is equivalent to the existence of an algorithm that is optimal on all
propositional tautologies, namely, it always solves the problem correctly and it takes for it
at most polynomially longer to stop on every tautology than for any other correct algorithm
on the same tautology. Then Sadowski [Sad99] proved a similar equivalence for SAT. Finally,
Messner [Mes99] gave a different proof of these equivalences extending them to many other
languages. He also coined in the term “optimal acceptors” for such algorithms. Monroe
[Mon09] recently gave a conjecture implying that optimal acceptors for TAUT do not exist.
Note that Levin [Lev73] showed that an optimal algorithm does exist for finding witnesses
to non-tautologies; however, (1) its behaviour on tautologies is not restricted; (2) after
translating to the decision problem by self-reducibility the running time in the optimality
condition is compared to the running time for all shorter formulas as well.

An automatizable proof system is one that has an automatization procedure that given
a tautology, outputs its proof of length polynomially bounded by the length of the shortest
proof in time bounded by a polynomial in the output length. The automatizability of a proof
system Π implies polynomial separability of its canonical NP pair [Pud03], the latter implies
the automatizability of a system that p-simulates Π and thus the weak automatizability of
Π (system Π is weakly automatizable if there is an automatization procedure that outputs
proofs in a system that p-simulates Π). This, however, does not imply the existence of (p-
)optimal propositional proof systems in the class of (weakly) automatizable proof systems.
To the best of our knowledge, no such system is known to the date.

2

Proving propositional tautologies heuristically. An obvious obstacle to construct-
ing an optimal proof system by enumeration is that no efficient procedure is known for
enumerating the set of all complete and sound proof systems. Recently a number of pa-
pers overcome similar obstacles in other settings by considering either computations with
non-uniform advice (see [FS06] for survey) or heuristic algorithms [FS04, Per07, Its09]. In
particular, optimal propositional proof systems with advice do exist [CK07]. We try to fol-
low the approach of heuristic computations to obtain a “heuristic” proof system. While our
work is motivated by propositional proof complexity, i.e., the language of propositional tau-
tologies, our results apply to algorithms and proof systems for any recursively enumerable
language.

We introduce a notion of a (randomized) heuristic acceptor (a randomized semidecision
procedure that may have false positives) and a corresponding notion of a simulation. Its
particular case, a deterministic acceptor (making no errors) for language L, along with
deterministic simulations, can be viewed in two ways:

� as an automatizable proof system for L (note that such proof system can be identified
with its automatization procedure; however, it may not be the case for randomized
algorithms, whose running time may depend on the random coins), where simulations
are p-simulations of proof systems;

� as an algorithm for L, where simulations are simulations of algorithms for L in the
sense of [KP89].

Given x ∈ L, an acceptor must return 1 and stop. The question (handled by simulations)
is how fast it does the job. For x /∈ L, the running time does not matter. Given x /∈ L,
a deterministic acceptor simply must not return 1. A randomized heuristic acceptor may
erroneously return 1; however, for “most” inputs it may do it only with bounded probability
(“good” inputs). The precise notion of “most” inputs is: given an integer parameter d and
a sampler for L, “bad” inputs must have probability less than 1/d according to the sampler.
The parameter d is handled by simulations in the way such that no heuristic acceptor can
stop in time polynomial in d and the length of input unless an optimal heuristic acceptor can
do that. A pair (D, L) where D is a polynomial-time samplable distribution on L is called
a distributional proving problem.

Polynomially bounded heuristic acceptors. Similarly to the classical case, the notion
of optimal heuristic acceptor has sense only for the languages and samplers that have no
polynomially bounded heuristic acceptors. It turns out that such polynomial-time samplers
and languages in co -NP correspond roughly to pseudo-random generators and the comple-
ments of their images, respectively (recall the suggestion of [ABSRW00, Kra01a, Kra01b] to
consider such problems for proving lower bounds for classical proof systems). More precisely,
there is such an intractible pair if and only if there is an infinitely-often one-way function.

Relation to proof systems. We also define randomized heuristic proof systems as the
systems that have proofs of “theorems” (these proofs are accepted with probability at least

3

1
2
), have no proofs (even those accepted with probability 1

8
) of most “non-theorems” except

of a 1/d fraction according to a sampler of “non-theorems”.
As said above, in the classical case optimal acceptors exist if and only if optimal proof

systems exist. We are currently unable to prove such equivalence in the heuristic case. It
is not even immediately obvious that the equivalence to (weakly) automatizable heuristic
proof systems, trivial in the classical case, holds for heuristic acceptors. We prove that it
is indeed the case that heuristic acceptors are equivalent to weakly automatizable heuristic
proof systems, which gives an optimal weakly automatizable heuristic proof system. It is clear
from the proof that one could omit the word “weakly” from this statement if the automatizing
procedure is allowed to output not only proofs but also “almost proofs” (accepted by the
proof system with probability 1

4
).

In Sect. 2 we give precise definitions. In Sect. 3 we construct an optimal randomized
heuristic acceptor. In Sect. 4 we give a notion of (randomized) heuristic proof system and
show that weakly automatizable heuristic proof systems are equivalent to heuristic accep-
tors. In Sec. 5 we show that the existence of problems intractible for heuristic acceptors is
equivalent to the existence of infinitely-often one-way functions. We also provide a complete
distributional proving problem. Finally, in Sect. 6 we list possible directions for further
research.

2 Preliminaries

2.1 Distributional proving problems

In this paper we consider algorithms and proof systems that allow small errors, i.e., claim a
small amount of wrong theorems. Formally, we have a probability distribution concentrated
on non-theorems and require that the probability of sampling a non-theorem accepted by an
algorithm or validated by the system is small.

Definition 2.1. We call a pair (D, L) a distributional proving problem if D is a collection
of probability distributions Dn concentrated on L∩{0, 1}n. In this paper we assume that D
is polynomial-time samplable, i.e., there is a polynomial-time randomized Turing machine
(sampler) that given 1n on input outputs x with probability Dn(x) for every x ∈ {0, 1}n.

In what follows we write Prx←Dn to denote the probability taken over x from such distri-
bution, while PrA denotes the probability taken over internal random coins used by algorithm
A (sometimes A is omitted).

2.2 Heuristic acceptors

Definition 2.2. A heuristic acceptor for distributional proving problem (D, L) is a ran-
domized algorithm A with two inputs x ∈ {0, 1}∗ and d ∈ N that satisfies the following
conditions:

1. A either accepts, i.e., outputs 1 (denoted A(. . .) = 1) or does not halt at all;

2. For every x ∈ L and d ∈ N, A(x, d) = 1.

4

3. For every n, d ∈ N,

Pr
r←Dn

{
Pr
A
{A(r, d) = 1} ≥ 1

8

}
<

1

d
.

A normalized heuristic acceptor is defined similarly, but condition (3) is replaced by

3′. For every n, d ∈ N,

Pr
r←Dn; A

{A(r, d) = 1} <
1

d
.

Remark 2.1. A normalized heuristic acceptor is not necessarily a heuristic acceptor for the
same input. However, it is a heuristic acceptor for a different value of d as we will show
below.

Remark 2.2. A semidecision procedure for every recursively enumerable language L is a
(heuristic) acceptor for arbitrary D.

The time spent by a heuristic acceptor may depend on its random coins. Therefore the
main complexity characteristic of a heuristic acceptor is its median time.

Definition 2.3. The median running time of algorithm A on input z is

tA(z) = min{t | Pr
A
{A(z) stops in at most t steps} ≥ 1

2
}.

We will also use a similar notation for “probability p time”:

t
(p)
A (z) = min{t | Pr

A
{A(z) stops in at most t steps} ≥ p}.

Definition 2.4. Function f : {0, 1}∗ × N → N is polynomially bounded on language L if
there is a polynomial p such that for all x ∈ L and d ∈ N, f(x, d) ≤ p(|x|d).

Definition 2.5. Function f : {0, 1}∗ × N → N dominates function g : {0, 1}∗ × N → N on
language L (denoted f � g), if there are polynomials p and q such that for all x ∈ L and
d ∈ N,

g(x, d) ≤ max
d′≤q(|x|d)

{p(f(x, d′)d|x|)}.

Remark 2.3.

1. If f � g on L and f is polynomially bounded on L, then so is g.

2. � is transitive.

Definition 2.6. Heuristic acceptor A for distributional proving problem (D, L) is polyno-
mially bounded if tA(x, d) is polynomially bounded on L.

Definition 2.7. For heuristic acceptors A and A′ for the same language L, heuristic acceptor
A simulates A′ if tA′ � tA on L.

Heuristic acceptor A strongly simulates A′ if tA′ � t
(3/4)
A on L.

5

Proposition 2.1 (Chernoff-Hoefding bound [McD98]). For independent random vari-
ables Xi ∈ {0, 1} with EXi = µ where 1 ≤ i ≤ N , for every ε > 0,

Pr

{∣∣∣∣∣
∑N

i=1 Xi

N
− µ

∣∣∣∣∣ ≥ ε

}
≤ 2e−2ε2N .

Proposition 2.2. For heuristic acceptor A for (D, L), there is a normalized heuristic accep-
tor B that strongly simulates A.

Proof. The new algorithm B(x, d) runs ` instances of A(x, 2d) independently in parallel
(where ` is to be defined later) and stops (answering 1) as soon as at least 5

16
` instances

of A stop. That many instances must stop in time at most tA(x, 2d) with probability at

least 1 − 2e−
9`
128 by Chernoff-Hoefding bound. Thus for every x ∈ L and ` big enough,

t
(3/4)
B (x, d) ≤ poly(`, tA(x, 2d)).

Let x ∈ supp Dn. Split supp Dn into S1 = {x ∈ supp Dn | PrA{A(x, 2d) = 1} < 1
8
} and

S2 = supp Dn \ S1. Since A is a heuristic acceptor, Dn(S2) < 1
2d

. For x ∈ S1, Chernoff-

Hoefding bound yields exponentially small probability 2e−
9`
128 of B accepting x. Choose `

such that 2e−
9`
128 < 1

4d
. Then Prx←Dn; B{B(x, d) = 1} = Prx←Dn; B{B(x, d) = 1 | x ∈

S1}Dn(S1) + Prx←Dn{B(x, d) = 1 | x ∈ S2}Dn(S2) ≤ Prx←Dn; B{B(x, d) = 1 | x ∈ S1} +
Dn(S2) < 1

4d
+ 1

2d
< 1

d
.

Proposition 2.3. If Prx←Dn; A{A(x, d) = 1} < 1
d

holds for every d, then for every λ > 0,
Prx←Dn{PrA{A(x, λd) = 1} ≥ 1

λ
} < 1

d
.

Proof. 1
λd

> Prx←Dn;A{A(x, λd) = 1} ≥ Prx←Dn;A{A(x, λd) = 1 | PrA{A(x, λd) = 1} ≥ 1
λ
}

·Prx←Dn{PrA{A(x, λd) = 1} ≥ 1
λ
} ≥ 1

λ
Prx←Dn{PrA{A(x, λd) = 1} ≥ 1

λ
}.

Corollary 2.1. If A is a normalized heuristic acceptor, then B(x, d) = A(x, 8d) is a heuristic
acceptor simulating A.

Propositions 2.2 and 2.3 imply that every heuristic acceptor is simulated by a normalized
heuristic acceptor, and vice versa.

3 Optimal heuristic acceptor

In this section, we construct an optimal heuristic acceptor, i.e., one that simulates every
other heuristic acceptor. By Prop. 2.2 and 2.3 it suffices to construct an optimal normalized
heuristic acceptor. Throughout the section, L is a recursively enumerable language.

The algorithm that we construct runs all heuristic acceptors in parallel and stops when
the first of them stops (recall Levin’s optimal algorithm for SAT [Lev73]). A major obstacle
to this simple plan is the fact that it is unclear how to enumerate all heuristic acceptors
efficiently (put another way, how to check whether a given algorithm is a correct heuristic
acceptor). The plan of overcoming this obstacle (similar to constructing a complete public-
key cryptosystem [HKN+05] (see also [GHP09])) is as follows:

6

� Prove that w.l.o.g. a correct heuristic acceptor is very good: in particular, amplify its
probability of success.

� Devise a “certification” procedure that distinguishes very good heuristic acceptors from
incorrect acceptors with overwhelming probability.

� Run all candidate heuristic acceptors in parallel, try to certify heuristic acceptors that
stop, and halt when the first of them passes the check.

The certification procedure is as follows.

Algorithm 3.1 (Procedure Certify(A, d′, n, T, `, δ)).

� Do ` times:

– Sample x ∈ Dn.

– Run A(x, d′) for at most T steps.

� Output 1, if there were at most δ` accepting computations that accepted (out of `).

Proposition 3.1. Let A≤T denote A with T -bounded alarm clock which interrupts A after
T steps and makes it output ⊥ if A has not finished itself. Then

� If Prx←Dn; A{A≤T (x, d′) = 1} < δ
2
, then Pr{Certify(A, d′, n, T, `, δ) = 1} ≥ 1 −

2e−δ2`/2.

� If Prx←Dn; A{A≤T (x, d′) = 1} > 2δ, then Pr{Certify{A, d′, n, T, `, δ) = 1} ≤ 2e−2δ2`.

Proof. Follows from Chernoff-Hoefding bounds.

We now construct an optimal normalized acceptor U .

Algorithm 3.2 (Algorithm U(x, d)).

1. Run A1(x, 4dn), A2(x, 4dn), . . . , Abn
2
c(x, 4dn), and a semidecision procedure for L on

input x in parallel, where n = |x| and Ai is the algorithm with Goedel number i.

2. If Ai accepts in Ti steps, then run Certify(Ai, 4dn, Ti, 2n
3d3, 1

2dn
) and accept if Certify

accepts (otherwise continue).

3. If the semidecision procedure accepts, then accept.

(If one of the parallel threads accepts, all other processes are terminated.)

Lemma 3.1. U(x, d) is a normalized heuristic acceptor.

7

Proof. By construction U either accepts or does not stop. For x ∈ L, it does stop because
of the semidecision procedure for L.

Let τi denote maxT{Prx←Dn; Ai
{A≤T

i (x, 4dn) = 1} ≤ 1
nd
}. Let Xi(x) be a random vari-

able that denotes the number of steps that Ai(x, 4dn) makes before it accepts. If Ai(x, 4dn)
doesn’t accept, then Xi(x) = ∞. Let Ci(T) denote the event Certify(Ai, 4dn, T, 2n3d3, 1

2dn
) =

1.
For every i,

Pr
x←Dn; Ai; Certify

{
∞⋃

T=1

Xi(x) = T ∧ Ci(T)} =
∞∑

T=1

Pr
x←Dn; Ai; Certify

{Xi(x) = T ∧ Ci(T)}

=

τi∑
T=1

Pr
x←Dn; Ai

{Xi(x) = T} Pr
Certify

{Ci(T)}

+
∑
T>τi

Pr
x←Dn; Ai

{Xi(x) = T} Pr
Certify

{Ci(T)} (1)

Lets estimate the first sum of (1):

τi∑
T=1

Pr
x←Dn; Ai

{Xi(x) = T} Pr
Certify

{Ci(T)} ≤
τi∑

T=1

Pr
x←Dn; Ai

{Xi(x) = T}

= Pr
x←Dn; Ai

{1 ≤ Xi(x) ≤ τi} ≤
1

nd
.

And now we estimate the second sum of (1):∑
T>τi

Pr
x←Dn; Ai

{Xi(x) = T} Pr
Certify

{Ci(T)} ≤ Pr
x←Dn; Ai

{τi < Xi(x)} Pr
Certify

{Ci(τi + 1)}

≤ Pr
Certify

{Ci(τi + 1)}
Prop. 3.1

≤ 2e−nd <
1

nd
.

Therefore, the whole sum (1) is less than 2
dn

. The D-measure of inputs that force U to
erroneously output 1 is

Pr
x←Dn; U

{U(x, d) = 1} ≤
bn/2c∑
i=1

Pr
x←Dn; Ai; Certify

{
∞⋃

T=1

Xi(x) = T ∧Ci(T)} <
n

2
· 2

nd
=

1

d
.

Lemma 3.2. Normalized heuristic acceptor U simulates every other normalized heuristic
acceptor.

Proof. Let A be a heuristic acceptor. Then Prop. 2.2 yields a normalized heuristic acceptor
B that strongly simulates A. Assume that B has Goedel number b. Then for bn

2
c > b,

it is run by U . By Prop. 3.1, Certify accepts it with probability at least 1 − 2e−dn/2.
Therefore, for bn

2
c > b, with probability at least 1

2
the running time of U(x, d) is at most

p1(dn · t(3/4)
B (x, 4dn)) for some polynomial p1, hence tU � t

(3/4)
B . Since B strongly simulates

A, t
(3/4)
B � tA. Thus tU � tA.

8

Theorem 3.1. U ′(x, d) = U(x, 8d) is a heuristic acceptor that simulates every other heuristic
acceptor.

Proof. It is a heuristic acceptor by Lemma 3.1 and Cor. 2.1. It simulates every other heuristic
acceptor by Lemma 3.2, Prop. 2.2, and the fact that U(x, 8d) simulates U(x, d).

4 Weakly automatizable heuristic proof systems

In this section we define heuristic proof systems and show that weakly automatizable heuristic
proof systems are essentially equivalent to heuristic acceptors (hence, there is an optimal
one).

Definition 4.1. Randomized Turing machine Π is a heuristic proof system for distributional
proving problem (D, L) if it satisfies the following conditions.

1. The running time of Π(x, w, d) is bounded by a polynomial in d, |x|, and |w|.

2. (Completeness) For every x ∈ L and every d ∈ N, there exists a string w such that
PrΠ{Π(x, w, d) = 1} ≥ 1

2
. Every such string w is called a correct Π(d)-proof of x.

3. (Soundness) Prx←Dn{∃w : PrΠ{Π(x, w, d) = 1} ≥ 1
8
} < 1

d
.

The main complexity characteristic of a heuristic proof system is the length of the
shortest (correct) proof. For heuristic proof system Π, we denote lΠ(x, d) = min{|w| |
PrΠ{Π(x, w, d) = 1} ≥ 1

2
} .

We now define the notion of weakly automatizable proof system similarly to the classical
case. Namely, a system is weakly automatizable if there is an algorithm that given x ∈ L,
finds efficiently a proof of x in another heuristic proof system and this proof is at most
polynomially longer than the length of the shortest proof in Π.

Definition 4.2. Heuristic proof system Π is weakly automatizable if there is a randomized
Turing machine A, heuristic proof system Π̂, and polynomial p satisfying the following
conditions:

1. For every x ∈ L and every d ∈ N,

Pr
w←A(x,d)

{
|w| ≤ p(d · |x| · lΠ(x, d)) ∧ w is a correct Π̂(d)-proof of x

}
≥ 1

4
. (2)

2. The running time of A(x, d) is bounded by a polynomial in |x|, d, and the size of its
own output.

Heuristic proof system Π is automatizable if it is weakly automatizable and Π̂ = Π.

Definition 4.3. We say that heuristic proof system Π1 simulates heuristic proof system Π2

if lΠ2 dominates lΠ1 on L.

9

Note that this definition essentially ignores proof systems that have much shorter proofs
for some inputs than the inputs themselves. We state it this way for its similarity to the
acceptors case.

Definition 4.4. Heuristic proof system Π is polynomially bounded if lΠ is polynomially
bounded on L.

Proposition 4.1. If heuristic proof system Π1 simulates system Π2 and Π2 is polynomially
bounded, then Π1 is also polynomially bounded.

Consider weakly automatizable proof system (Π, A, Π̂) for distributional proving problem
(D, L) with recursively enumerable language L. Let us consider the following algorithm.

Algorithm 4.1 (Algorithm UΠ(x, d)).

� Execute 1000 copies of A(x, d) and a semidecision procedure for L in parallel.

� For each copy of A(x, d),

– if it stops with result w, then

* execute Π̂(x, w, d) 60000 times;

* if there were at least 10000 accepts of Π̂ (out of 60000), accept.

� If the semidecision procedure for L accepts, then accept.

Lemma 4.1. If (Π, A, Π̂) is a (correct) heuristic weakly automatizable proof system for re-
cursively enumerable language L, then UΠ is a heuristic acceptor for L and lΠ(x, d) dominates
tUΠ

(x, d).

Proof. Soundness (condition 3 in Def. 2.2). Let ∆n = {x ∈ L | ∃w : Pr{Π̂(x, w, d) = 1} ≥
1
8
}. By definition, Dn(∆n) < 1

d
. For x ∈ L \∆n and specific w, Chernoff bounds imply that

Π̂(x, w, d) accepts in at least 1
6

fraction of the 60000 executions with exponentially small
probability, which remains much smaller than 1

8
even after multiplying by 1000.

Completeness (conditions 2 and 1 in Def. 2.2) is guaranteed by the execution of the
semidecision procedure for L.

Simulation. For x ∈ L, the probability that the event in (2) does not hold all 1000
times is negligible (at most (3

4
)1000 < 10−120). Thus with high probability at least one of the

parallel executions of A(x, d) outputs a correct Π̂(d)-proof of size bounded by a polynomial
in lΠ(x, d), |x| and d. For x ∈ L and correct Π̂(d)-proof w, Chernoff bounds imply that
Π̂(x, w, d) accepts in at least 1

6
fraction of the 60000 executions with probability close to 1.

Therefore, tUΠ
(x, d) is bounded by a polynomial in |x|, d, and lΠ(x, d).

Lemma 4.2. Let C be a heuristic acceptor for (D, L). Then there is a weakly automatizable
heuristic proof system ΠC for (D, L) such that tC dominates lΠC

.

10

Proof. The system ΠC will have unary words 1T as proofs. Namely, ΠC(x, 1T , d) accepts if
C(x, d) accepts in at most T steps. The median time tC(x, d) written in unary is the shortest

Π
(d)
C -proof of x. The correctness of ΠC follows from the correctness of C.

The weakly automatizing procedure for ΠC will output proofs that are accepted by this
system with slightly smaller probability than the required 1

2
. Thus we construct another

system Π̂ that accepts these proofs. More precisely, Π̂(x, 1T , d) executes ` parallel instances
of C(x, d) for at most T steps and stops as soon as at least 3

16
` instances accept. For x ∈ L,

Chernoff bounds imply that for T ≥ t
(1/4)
C (x, d) and ` big enough, Π̂(x, 1T , d) accepts with

probability at least 1
2
.

For those inputs x for which Pr{C(x, d) = 1} < 1
8
, Chernoff bounds imply that Pr{Π̂(x, 1T , d) =

1} with exponentially small (in particular, less than 1
8
) probability. The D-probability of

other inputs is at most 1
d
, which implies the correctness of Π̂.

The automatizing procedure executes C(x, d) and, if it accepts, outputs 1T where T is
the number of steps made by C. With probability at least 1

4
the resulting proof 1T has

T ∈ [t
(1/4)
C (x, d); t

(1/2)
C (x, d)]. Every such proof is a correct Π̂(d)-proof of length not exceeding

lΠC
(x, d) = t

(1/2)
C (x, d).

Theorem 4.1. For recursively enumerable L and polynomial-time samplable D, there is an
optimal weakly automatizable heuristic proof system (i.e., one that simulates every other
weakly automatizable heuristic proof system for (D, L)).

Proof. By Lemma 4.1 each weakly automatizable heuristic proof system Π yields a heuristic
acceptor A with wΠ � tA. Then A is simulated by the universal heuristic acceptor U ′

(Theorem 3.1, i.e., tA � tU ′ . By Lemma 4.2 heuristic acceptor U ′ can be transformed into
a weakly automatizable heuristic proof system ΠU ′ with tU ′ � wΠU′ . By transitivity, ΠU ′

simulates Π.

5 Hard problems for heuristic acceptors

In this section, we show that the existence of one-way functions implies the existence of dis-
tributional proving problems that have no polynomially bounded heuristic acceptors. More
precisely, the existence of such problems is equivalent to the existence of infinitely-often one-
way functions, i.e., ones that are hard to invert for infinitely many input lengths. The logic
of the equivalence is as follows: ∃ i.o. one-way functions ⇒ ∃ i.o. pseudorandom generators
⇒ ∃ intractable distributional proving problems ⇒ ∃ average-case one-way functions ⇒ ∃
i.o. one-way functions.

Definition 5.1. Let f : {0, 1}∗ → {0, 1}∗ be a length-preserving polynomial-time com-
putable function. We call it i.o. one-way if for every polynomial-time randomized algorithm
A and every polynomial p,

∀n0 ∃n > n0 Pr
x←Un

{A(x) ∈ f−1(f(x))} <
1

p(n)
.

11

Similarly to the classical case, the existence of i.o. one-way functions implies the existence
of i.o. pseudorandom generators.

Definition 5.2. Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function such
that ∀r |G(r)| = |r|+1. We call it i.o. pseudorandom generator if for every polynomial-time
randomized algorithm A and every polynomial p,

∀n0 ∃n > n0 | Pr
x←Un

{A(G(x)) = 1} − Pr
x←Un+1

{A(x) = 1}| < 1

p(n)
.

Theorem 5.1 (cf. [HILL99]). If there is an i.o. one-way function, then there is an i.o.
pseudorandom generator.

Proof. The construction repeats that of [HILL99]. In the latter the lengths of inputs where
the one-way function is hard to invert are mapped to the lengths of inputs where the pseu-
dorandom generator is hard to break.

Assume there exists an i.o. pseudorandom generator. We now show how to transform it
into a distributional proving problem that has no polynomially bounded heuristic acceptors.

Theorem 5.2. If there is an i.o. pseudorandom generator G, then there is a distributional
proving problem (D, L) with polynomial-time samplable D and language L ∈ co -NP such
that there is no polynomially bounded heuristic acceptor for (D, L).

Proof. Define Dn+1(x) = Pry←Un{G(y) = x} and L =
⋃

n({0, 1}n+1 \G({0, 1}n)).
Suppose that there is a normalized heuristic acceptor A for (D, L) such that tA(x, d) ≤

q(|x|d) for a polynomial q. We then construct algorithm B(x) as follows: It executes A(x, 1
10

)
for q(10|x|) steps and outputs 1 iff A accepts (otherwise B outputs 0).

We now show that B breaks G. Indeed, Prx←Un+1{B(x) = 1} ≥ 1
2
· |{0,1}n+1\G({0,1}n)|

2n+1 ≥
1
2
(1− 1

2
) = 1

4
. However, Prx←Un{B(G(x)) = 1} < 1

10
. Contradiction.

Following [HI10], we define average-case one-way functions.

Definition 5.3. Length-preserving polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
is average-case one-way if for every poly(|x|d)-time randomized algorithm A(x, d),

∀n0 ∃n > n0 Pr
x←Un

[Pr
A
{f(A(f(x), d)) 6= f(x)} ≥ 1

4
] ≥ 1

d
.

Remark 5.1. Using the argument that similar to one used in propositions 2.2 and 2.3 it is
possible to show that the condition

Pr
x←Un

{Pr
A
{f(A(f(x), d)) 6= f(x)} ≥ 1

4
} ≥ 1

d

can be equivalently replaced by

Pr
x←Un

{f(A(f(x), d)) 6= f(x)} ≥ 1

d
.

12

Theorem 5.3 ([HI10]). The existence of average-case one-way functions implies the exis-
tence of i.o. one-way functions.

Theorem 5.4. Assume that (D, L) has no polynomially bounded heuristic acceptors. Then
there exists an average-case one-way function.

Proof. Assume that D has a polynomial-time sampler g using p(n) random bits for inputs
of length n, i.e., |g(x)| = n whenever |x| = p(n). Define function f as follows:

f(x) =

{
g(x)0p(n)−n, if ∃n |x| = p(n),

x, otherwise.

We now show that f is average-case one-way. Let B(x, d) be a q(|x|d)-time algorithm
(where q is a polynomial) and for every n big enough, Prx←Up(n); B{f(B(f(x), d)) 6= f(x)} <
1
d
. Define algorithm A(x, d) as follows: Compute y = B(x0p(|x|)−|x|, d); if f(y) = x0p(|x|)−|x|,

then output 0, otherwise 1.
The running time of A(x, d) is poly(|x|d). For x ∈ L, there is no preimage, i.e.,

A(x, d) = 1. For x /∈ L, Prx←Dn; A{A(x, d) = 1} = Prx←Up(n); B{f(B(f(x), d)) 6= f(x)} < 1
d
,

which gives a polynomially bounded normalized heuristic acceptor and thus a polynomially
bounded heuristic acceptor for (D, L).

Corollary 5.1. The following objects exist (or do not exist) simultaneously:

� Distributional proving problem that has no polynomially bounded heuristic acceptors.

� Infinitely often one-way function.

� Average-case one-way function.

� Infinitely often pseudorandom generator.

Similarly to Levin’s universal one-way function [Lev87] one can construct a universal
distributional proving problem which is complete under reductions that preserve tractability
for heuristic acceptors. Such reductions resemble reductions used in average-case complexity
(see [BT06]).

Definition 5.4. Distributional proving problem (D1, L1) reduces to distributional proving
problem (D2, L2) if there is an injective polynomial-time computable f : {0, 1}∗ → {0, 1}∗
mapping inputs of equal length to inputs of equal length such that

� x ∈ L1 ⇐⇒ f(x) ∈ L2;

� there is a polynomial p such that for for every input x, p(|x|)D2(f(x)) ≥ D1(x).

Proposition 5.1. If (D, L) reduces to (D′, L′) and (D′, L′) has a polynomially bounded
heuristic acceptor, then so has (D′, L′).

13

Proof. Assume the reduction is given by function f mapping words of length t into words
of length ϕ(t), and p is as in the definition above. Let A(x, d) be a heuristic acceptor for
(D′, L′). Then B(x, d) = A(f(x), p(|x|)d) is a heuristic acceptor for (D, L):

Pr
x←Dn

{Pr
A
{A(f(x), p(|x|)d) = 1} ≥ 1

8
} =

∑
x∈supp Dn:Pr{A(f(x),p(n)d)=1}≥ 1

8
D(x)

≤
∑

x∈supp Dn:Pr{A(f(x),p(n)d)=1}≥ 1
8

p(n)D′(f(x)) ≤
∑

y∈supp D′
ϕ(n)

:Pr{A(y,p(n)d)=1}≥ 1
8

p(n)D′(y)

= p(n) · Pr
y←D′

ϕ(n)

{Pr{A(y, p(n)d) = 1} ≥ 1
8
} < p(n)/(dp(n)) = 1/d.

Lemma 5.1. There is a constant C such that every problem (D, L) reduces to some (D′, L′)
where D′ has a sampler running in time at most Cn2.

Proof. We use padding. Assume that sampler g for D runs in at most cnc steps and uses at
least n random bits. The new sampler h, asked to produce a sample of length n, pads g’s
sample by outputting h(r) = 0cnc

1g(r). Let L′ = {0c|x|c1x | x ∈ L}. The reduction is given
by f(y) = 0c|y|c1y.

We now construct a universal distributional proving problem (R,X). The language X
contains only inputs of even lengths. The distribution R is uniform on odd lengths and
defined on length 2n as follows: with probability 1/2i (where 1 ≤ i ≤ n − 1), its sampler
g(r) outputs the concatenation siAi(r), where where si is a word of length n that contains
zeroes except for the position i where it has 1 and Ai is the algorithm with Goedel number
i equipped with quadratic alarm clock as in Lemma 5.1; with probability 1/2n−1 it outputs
snAn(r). Let X = {0, 1}∗ \ supp R.

Theorem 5.5. Every distributional proving problem (D, L) reduces to (R,X).

Proof. By Lemma 5.1 the problem (D, L) reduces to a quadratic-time samplable (D′, L′).
Assume that the sampler for D′ has Goedel number k, then (D′, L′) reduces to (R,X) by
f(x) = skx, where sk is as in the definition of R (for |x| < k, f computes the answer itself
and maps to an appropriate fixed string, which takes a constant time). The domination
condition 2kR(x) ≥ D′(x) is satisfied since k is a constant.

6 Further research

� For weakly automatizable heuristic proof system equivalent to a heuristic acceptor,
show that its automatizing procedure can output a correct proof in the same proof
system. (That is, the system is automatizable in the classical sense.)

� Devise an optimal heuristic proof system.

� Give a nice conjecture implying the existence of distributional proving problems that
have no polynomially bounded heuristic proof systems.

� Consider a version of the notion of heuristic proof systems related to trapdoor functions.

14

Acknowledgements

The authors are grateful to Dima Antipov and Dima Grigoriev for helpful discussions.

References

[ABSRW00] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-
son. Pseudorandom generators in propositional proof complexity. Technical
Report 00-023, Electronic Colloquium on Computational Complexity, 2000.
Extended abstract appears in Proceedings of FOCS-2000.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundation
and Trends in Theoretical Computer Science, 2(1):1–106, 2006.

[CK07] Stephen A. Cook and Jan Kraj́ıček. Consequences of the provability of NP ⊆
P/poly. The Journal of Symbolic Logic, 72(4):1353–1371, 2007.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of proposi-
tional proof systems. The Journal of Symbolic Logic, 44(1):36–50, March 1979.

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic
polynomial time. In Proceedings of the 45th IEEE Symposium on Foundations
of Computer Science, pages 316–324, 2004.

[FS06] Lance Fortnow and Rahul Santhanam. Recent work on hierarchies for semantic
classes. SIGACT News, 37(3):36–54, 2006.

[GHP09] Dima Grigoriev, Edward A. Hirsch, and Konstantin Pervyshev. A complete
public-key cryptosystem. Groups, Complexity, Cryptology, 1(1):1–12, 2009.

[HI10] E.A. Hirsch and D.M. Itsykson. An infinetely often one-way function based on
an average-case assumption. St. Petersburg Math. J., 21(3):459–468, 2010.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM Journal on Com-
puting, 28(4):1364–1396, 1999.

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On
robust combiners for oblivious transfer and other primitives. In Proc. of
EUROCRYPT-2005, 2005.

[Its09] Dmitry M. Itsykson. Structural complexity of AvgBPP. In Proceedings of 4th
International Computer Science Symposium in Russia, volume 5675 of Lecture
Notes in Computer Science, pages 155–166, 2009.

[KP89] Jan Kraj́ıček and Pavel Pudlák. Propositional proof systems, the consistency
of first order theories and the complexity of computations. The Journal of
Symbolic Logic, 54(3):1063–1079, September 1989.

15

[Kra01a] Jan Kraj́ıček. On the weak pigeonhole principle. Fundamenta Mathematicae,
170(1–3):123–140, 2001.

[Kra01b] Jan Kraj́ıček. Tautologies from pseudorandom generators. Bulletin of Symbolic
Logic, 7(2):197–212, 2001.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problems of Information
Transmission, 9:265–266, 1973.

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators. Combina-
torica, 7, 1987.

[McD98] C. McDiarmid. Concentration, volume 16 of Algorithms and Combinatorics,
pages 195–248. Springer-Verlag, 1998.

[Mes99] Jochen Messner. On optimal algorithms and optimal proof systems. In Pro-
ceedings of the 16th Symposium on Theoretical Aspects of Computer Science,
volume 1563 of Lecture Notes in Computer Science, pages 361–372, 1999.

[Mon09] Hunter Monroe. Speedup for natural problems and coNP?=NP. Technical
Report 09-056, Electronic Colloquium on Computational Complexity, 2009.

[Per07] Konstantin Pervyshev. On heuristic time hierarchies. In Proceedings of the
22nd IEEE Conference on Computational Complexity, pages 347–358, 2007.

[Pud03] Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical
Computer Science, 295(1–3):323–339, 2003.

[Raz94] Alexander A. Razborov. On provably disjoint NP-pairs. Technical Report 94-
006, Electronic Colloquium on Computational Complexity, 1994.

[Sad99] Zenon Sadowski. On an optimal deterministic algorithm for SAT. In Proceedings
of CSL’98, volume 1584 of Lecture Notes in Computer Science, pages 179–187.
Springer, 1999.

16

