
Chapter 2

Ordinary grammars

2.1 Definitions by rewriting, by deduction, by parse trees and by
equations

Definition of strings with well-nested brackets. Let a left bracket be denoted by a, and a
right bracket by b. A formal language over the alphabet Σ = {a, b}.

• ε is a well-nested string;

• if u is a well-nested string, then so is aub;

• if u and v are well-nested strings, then so is uv.

Equivalent reformulation: w is a well-nested string if and only if

• w = ε, or

• w = aub for some well-nested string u, or

• w = uv for some well-nested strings u and v.

Let S be an abstract symbol that denotes a well-nested string. In the notation of formal
grammars, the above definition is written as follows.

S → ε | aSb | SS

Here the vertical line separates alternative forms of S, and is therefore a logical disjunction. Such
a definition is called a formal grammar.

Definition 2.1. An ordinary formal grammar is a quadruple G = (Σ, N,R, S), in which:

• Σ is the alphabet of the language being defined, that is, a finite set of symbols, from which
the strings in the language are built;

• N is a finite set of category symbols representing the syntactic categories defined in the
grammar. Each of these symbols denotes a certain property that every string over Σ is
deemed to have or not to have. (also called syntactic types, nonterminal symbols, variables
or predicate symbols, depending on the outlook on grammars);

• R is a finite set of grammar rules, each reprenenting a possible structure of strings with the
property A ∈ N as a concatenation X1 . . . X` of zero or more symbols symbols X1, . . . , X` ∈
Σ ∪N , with ` > 0.

A→ X1 . . . X` (2.1)

1

2 A. Okhotin, “Formal grammars” (chapter 2 draft, September 10, 2014)

• S ∈ N is a distinguished category symbol representing all well-formed sentences defined by
the grammar (the letter S stands for “sentence”, also occasionally referred as an “initial
symbol” or a “start symbol”).

A rule A → X1 . . . Xn states that if a string w is representable as a concatenation w1 . . . wn
of n substrings, where each i-th substring has the property Xi, then w has the property A.

If A→ α1, . . . , A→ αm are all rules for a symbol A ∈ N , these rules may be written as

A→ α1 | . . . | αm,

in which the vertical lines separating the alternatives are, in essense, disjunction operators.
This intuitive meaning of a grammar can be formalized in three ways. One definition employs

string rewriting: this definition, popularized by Chomsky [3], is the most well-known. Another
definition uses deduction on items of the form “w has the property A”, and one more definition
is by a solution of language equations.

Consider the above grammar for well-nested strings, written in formal notation. The language
of all well-nested strings is known as the Dyck language, after the German mathematician Walther
von Dyck.

Example 2.1. The Dyck language is generated by a grammar G = (Σ, N,R, S), where Σ =
{a, b}, N = {S} and R = {S → aSb, S → SS, S → ε}. A grammar such as this shall be written
as follows.

S → aSb | SS | ε

2.1.1 Definition by string rewriting

One approach to defining the meaning of a grammar is by rewriting the so-called sentential
forms, which are strings over a combined alphabet Σ∪N containing both symbols of the target
language and category symbols. A sentential form serves as a scheme of a sentence, in which
every occurrence of a category symbol A ∈ N stands for some string with the property A. At
each step of rewriting, some category symbol A is replaced by the right-hand side of some rule
for A, thus obtaining a more precise sentential form. The string rewriting begins by taking the
initial symbol S (that is, the least precise sentential form) and proceeds until only symbols of
the alphabet remain (that is, an actual sentence of the language is obtained).

Definition 2.1(R) (Chomsky [3]). Let G = (Σ, N,R, S) be a grammar. Define a relation =⇒
of one-step derivability on (Σ ∪N)∗ as follows.

sAs′ =⇒ sαs′ (for all A→ α ∈ R and s, s′ ∈ (Σ ∪N)∗)

The relations of reachability in zero or more steps, in one or more steps, in exactly ` steps and in
at most ` steps are denoted by =⇒∗, =⇒+, =⇒` and =⇒6`, respectively. The language generated
by a string α ∈ (Σ∪N)∗ is the set of all strings over Σ obtained from it in finitely many rewriting
steps.

LG(α) = {w | w ∈ Σ∗, α =⇒∗ w}

The language generated by the grammar is the language generated by its initial symbol S.

L(G) = LG(S) = {w | w ∈ Σ∗, S =⇒ ∗w}

If multiple grammars are being considered, then the relation of one-step rewriting shall be
denoted by G

=⇒.

Ordinary grammars 3

Example 2.1(R). In the grammar for the Dyck language given in Example 2.1, the string
abaabb can be obtained by rewriting S as follows (the category symbol rewritten at each step is
underlined).

S =⇒ SS =⇒ aSbS =⇒ abS =⇒ abaSb =⇒ abaaSbb =⇒ abaabb

Hence, abaabb ∈ L(G).
The same string can be obtained by applying the same rules in a different order.

S =⇒ SS =⇒ SaSb =⇒ SaaSbb =⇒ aSbaaSbb =⇒ aSbaabb =⇒ abaabb

Both rewriting sequences represent the same parse of this string. The order of applying the rules
is irrelevant.

The definition by rewriting incurred some corresponding terminology. Category symbols are
called “nonterminal symbols”, because these symbols require further rewriting for the rewriting
sequence to terminate; accordingly, the symbols of the alphabet Σ are called “terminal symbols”.
Rules of a grammar are called “productions”. This terminology, which reflects the technical
aspects of the definition, but not the nature of the grammars, is generally avoided in this book,
but knowing it is essential for reading the original papers.

2.1.2 Definition by deduction

According to the second definition, the language generated by a grammar is defined by a for-
mal deduction system. This definition is important for making the logical nature of the grammars
explicit. It also very well corresponds to the deductions performed by parsing algorithms.

Definition 2.1(D) (implicit in Kowalski [14, Ch. 3]). For a grammar G = (Σ, N,R, S), consider
elementary propositions (items) of the form “a string w has a property X”, with w ∈ Σ∗ and
X ∈ Σ ∪N , denoted by X(w). The deduction system uses the following axioms, which say that
a one-symbol string a has the property a; that is, “a is a”.

` a(a) for all a ∈ Σ

Each rule A → X1 . . . X`, with ` > 0 and Xi ∈ Σ ∪ N , is regarded as the following schema for
deduction rules.

X1(u1), . . . , X`(u`) ` A(u1 . . . u`) for all u1, . . . , u` ∈ Σ∗

A derivation (or a proof) of a proposition A(u) is a sequence of such axioms and deductions,
where the set of premises at every step consists of earlier derived propositions.

I1 ` X1(u1)

...
Iz−1 ` Xz−1(uz−1)

Iz ` A(u)

(with Ij ⊆ {Xi(ui) | i ∈ {1, . . . , j − 1}}, for all j)

The existence of such a derivation is denoted by `G A(u).
Whenever an item X(w) can be deduced from the above axioms by the given deduction rules,

this is denoted by ` X(w). Define LG(X) = {w | ` X(w)} and L(G) = LG(S) = {w | ` S(w)}.

4 A. Okhotin, “Formal grammars” (chapter 2 draft, September 10, 2014)

Example 2.1(D). According to the grammar in Example 2.1, the membership of the string
abaabb in the Dyck language is logically deduced as follows.

` S(ε) (rule S → ε)
` a(a) (axiom)
` b(b) (axiom)

a(a), S(ε), b(b) ` S(ab) (rule S → aSb)
a(a), S(ab), b(b) ` S(aabb) (rule S → aSb)
S(ab), S(aabb) ` S(abaabb) (rule S → SS)

2.1.3 Definition by parse trees

A parse tree conveys the parse of a string according to a grammar. It can be obtained from
a tree corresponding to a deduction.

Definition 2.1(T). Let G = (Σ, N,R, S) be a grammar and consider trees of the following form.
Each node of the tree is labelled with a symbol from Σ ∪N , and its sons are linearly ordered. A
node labelled with a ∈ Σ must have no sons. For each node labelled with A ∈ N , let X1, . . . , X`

be the labels in its sons; then the grammar must contain a rule A → X1 . . . X`. The yield of a
tree is a string w ∈ Σ∗ formed by all nodes labelled with symbols in Σ, written according to the
linear order. If X is the label of the root, such a tree is called a parse tree of w from X.

Define LG(X) = {w | there is a parse tree of w from X} and L(G) = LG(S).

In each node labelled with A ∈ N , the rule used in this node can be determined from the
node’s sons. Nevertheless, it is often convenient to write the rule explicitly, as in the sample
parse tree given in Figure 2.1, in which every node labelled by any rule should have label S by
Definition 2.1(T).

S→SS

a b a ba b

S→aSb

S→aSb
S→aSb

S→εS→ε

Figure 2.1: A parse tree of the string abaabb according to the grammar in Example 2.1.

2.1.4 Towards a definition by equations

Another equivalent definition of the language generated by a grammar is by a solution of a
system of equations with languages as unknowns.

Let the category symbols in a grammar G = (Σ, N,R, S) be numbered from 1 and n, with
N = {A1, A2, . . . , An}. Each category symbol Ai is interpreted as a variable that assumes the

Ordinary grammars 5

value of a formal language over Σ. The correct value of this variable should be the set of strings
with the property Ai. These values are defined by a system of language equations of the following
form, where the right-hand sides ϕi : (2Σ∗

)n → 2Σ∗ are any functions on languages.
A1 = ϕ1(A1, . . . , An)

...
An = ϕn(A1, . . . , An)

The right-hand side ϕi of each equation is constructed according to the rules of the grammar
for the symbol Ai: each rule for Ai is transcribed as a concatenation of variables and singleton
constant languages {a}, and the whole function ϕi is the union of all these concatenation.

Let Σ be an alphabet, let n > 1. Consider vectors on n languages of the form (L1, . . . , Ln);
the set of all such vectors is (2Σ∗

)n. Define a partial order of componentwise inclusion (v)
on the set of these vectors as (K1, . . . ,Kn) v (L1, . . . , Ln) if and only if Ki ⊆ Li. The least
element is ⊥ = (∅, . . . ,∅), the greatest one is > = (Σ∗, . . . ,Σ∗). For any two such vectors, their
componentwise union is denoted by (K1, . . . ,Kn) t (L1, . . . , Ln) = (K1 ∪ L1, . . . ,Kn ∪ Ln).

Let ϕ = (ϕ1, . . . , ϕn) be a vector function representing the right-hand side of the system.
Assume that ϕ has the following two properties:

• ϕ is monotone, in the sense that for any two vectors K and L, the inequality K v L implies
ϕ(K) v ϕ(L).

• ϕ is t-continuous, in the sense that for every increasing sequence of vectors of languages
{L(i)}∞i=1 it holds that

∞⊔
i=1

ϕ(L(i)) = ϕ
(∞⊔
i=1

L(i)
)
.

Lemma 2.1. If ϕ is monotone and t-continuous, then the least solution of a system X = ϕ(X)
is the vector

L =

∞⊔
k=0

ϕk(⊥)

Proof. The sequence {ϕk(⊥)}k>0 is monotone, because ⊥ v ϕ(⊥) by the definition of the least
element, and then ϕk−1(⊥) v ϕk(⊥) implies ϕk(⊥) v ϕk+1(⊥) by the monotonicity of ϕ. To see
that L is the solution of the system, consider that

ϕ(L) = ϕ
(∞⊔
k=0

ϕk(⊥)
)

=
∞⊔
k=0

ϕ(ϕk(⊥)) =
∞⊔
k=0

ϕk+1(⊥)

because ϕ is t-continuous, and that
⊔∞
k=0 ϕ

k+1(⊥) =
⊔∞
k=0 ϕ

k(⊥) = L, because these two
sequences are in fact the same. This shows that ϕ(L) = L.

LetK be any vector with ϕ(K) = K and consider the sequences {ϕk(⊥)}∞k=0 and {ϕk(K)}∞k=0

Then each element of the former sequence is a subset of the corresponding element of the latter
sequence: ϕk(⊥) v ϕk(K), which can be proved inductively on k, using the monotonicity of ϕ.
This inequality is extended to the least upper bounds of the sequences as L =

⊔∞
k=0 ϕ

k(⊥) v⊔∞
k=0 ϕ

k(K) = K, which proves that L is the least among all solutions.

2.1.5 Definition by language equations

Definition 2.1(E) (Ginsburg and Rice [9]). Let G = (Σ, N,R, S) be an ordinary grammar.
The associated system of language equations is a system of equations in variables N , with each

6 A. Okhotin, “Formal grammars” (chapter 2 draft, September 10, 2014)

variable representing an unknown language over Σ, which contains one equation of the form
A = ϕ for each variable A ∈ N . This equation is of the following form.

A =
⋃

A→X1...X`∈R
X1 · . . . ·X` (for all A ∈ N) (2.2)

Each Xi ∈ Σ in the equation represents a constant language {a}, and a rule A→ ε is represented
by a constant {ε}. Let (. . . , LA, . . .)A∈N be the least solution of this system. Then LG(A) is
defined as LA for each A ∈ N .

Example 2.1(E). The language equation corresponding to the grammar in Example 2.1 is

S = ({a} · S · {b}) ∪ (S · S) ∪ {ε}

and the Dyck language is its least solution (whereas the greatest solution is S = Σ∗).

As demonstrated by this example, the system of equations (2.2) corresponding to a grammar
need not have a unique solution. However, it always has some solutions, and among them
there is the least solution with respect to componentwise inclusion. This least solution can be
obtained as a limit of an ascending sequence of vectors of languages, with the first element
⊥ = (∅, . . . ,∅), and with every next element obtained by applying the right-hand sides of
(2.2) as a vector function ϕ :

(
2Σ∗)n → (

2Σ∗)n to the previous element. Since this function
is monotone with respect to the partial ordering v of componentwise inclusion, the resulting
sequence {ϕk(⊥)}k→∞ is ascending, and the continuity of ϕ implies that its limit (least upper
bound)

⊔
k>0 ϕ

k(⊥) is the least solution.

Example 2.2. For the system of equations in Example 2.1(E), the sequence {ϕk(⊥)}k>0 takes
the form

ϕ0(⊥) = ∅,
ϕ1(⊥) = {ε},
ϕ2(⊥) = {ε, ab},
ϕ3(⊥) = {ε, ab, aabb, abab},
ϕ4(⊥) = {ε, ab, aabb, abab, aaabbb, aababb, abaabb, ababab, aabbab, aabbaabb, aabbabab, ababaabb, abababab},

...

In particular, abaabb ∈ ϕ4(⊥), because ab, aabb ∈ ϕ3(⊥) and abaabb ∈ ϕ3(⊥) · ϕ3(⊥) ⊆ ϕ4(⊥).
(by the concatenation S · S in the right-hand side of the equation).

Introduces its own terminology: category symbols are called variables.

2.1.6 Equivalence of the four definitions

To see that a grammar generates the same language under each of Definitions 2.1(R), 2.1(D),
2.1(T), 2.1(E).

The proof is quite boring, and a reader who reads it until the end may exclaim that all these
definitions are the same and there is nothing to prove. If this happens, then the main goal of
this section—that of building an understanding of the definition of ordinary grammars—will be
accomplished.

Notation: for a |N |-tuple L = (. . . , LB, . . .)B∈N , let [L]A := LA for each A ∈ N , and
[L]a := {a} for each a ∈ Σ.

Ordinary grammars 7

Theorem 2.1. Let G = (Σ, N,R, S) be a grammar, as in Definition 2.1. For every X ∈ Σ ∪N
and w ∈ Σ∗, the following four statements are equivalent:

(R). X =⇒∗ w,

(D). ` X(w),

(T). there is a parse tree of w from X,

(E). w ∈
[⊔

k>0 ϕ
k(⊥)

]
X
.

Proof. (R) ⇒ (D) Induction on the number of steps in the rewriting of X to w.
Basis: X =⇒∗ w in zero steps. Then X = w = a ∈ Σ∗ and ` a(a) by an axiom.
Induction step. Let X =⇒k w with k > 1. Then X = A ∈ N and the rewriting begins by

applying a rule A → X1 . . . X`. Then, each Xi is rewritten to a string wi ∈ Σ∗ in less than k
steps, and w = w1 . . . w`. By the induction hypothesis, ` Xi(wi) for each i. Then the desired
item A(w) is deduced as

X1(w1), . . . , X`(w`) ` A(w) by the rule A→ X1 . . . X`.

(D) ⇒ (T) Induction on the number of applications of grammar rules in the deduction
` X(w).

Basis: no rules applied. Then X(w) must be an axiom, that is, X = w = a, and the requested
tree consists of a single node labelled with a.

Induction step. Let X(w) be deduced using one or more rules. Then X = A ∈ N . Consider
the last step of its deduction, which must be of the form

X1(w1), . . . , X`(w`) ` A(w), by some rule A→ X1 . . . X`,

where w1 . . . w` = w. Each of its premises, Xi(wi), can then be deduced using fewer rules, and
hence, by the induction hypothesis, there exists a parse tree with the root Xi and with the
yield wi. Construct a new tree by adding a new root labelled with A and by connecting it to
X1, . . . , X`. This is a valid parse tree with the yield w.

(T) ⇒ (E) Consider a parse tree with a root X ∈ Σ ∪ N and yield w ∈ Σ∗, and let m be
the number of nodes labelled with symbols in N . The proof is by induction on m.

Basis: no such nodes. Then the tree consists of a unique node labelled X = a, and its yield
is w = a. Thus the claim holds as a ∈ [⊥]a.

Induction step. If a tree contains at least one node labelled with a category symbol, then
its root is among such nodes, that is, X = A ∈ N . Let X1, . . . , X` be the labels of the sons of
this node. For each Xi, consider the subtree with Xi as a root, and let wi be the yield of that
subtree. Then w = w1 . . . w`.

By the induction hypothesis for each i-th subtree, wi ∈
[⊔

k>0 ϕ
k(⊥)

]
Xi
. Concatenating

these statements gives w1 . . . w` ∈
[⊔

k>0 ϕ
k(⊥)

]
X1
. . .
[⊔

k>0 ϕ
k(⊥)

]
X`

, and since
⊔
k>0 ϕ

k(⊥) is
a solution of the system of language equations corresponding to the grammar, this implies that
w ∈

[⊔
k>0 ϕ

k(⊥)
]
A
, as claimed.

(E) ⇒ (R) If w ∈
[⊔

k>0 ϕ
k(⊥)

]
X
, then there exists such a number k > 0, that w ∈

[ϕk(⊥)]X . The proof is by induction on the least such number k.
Basis: w ∈ [ϕ0(⊥)]X = [⊥]X . Then w = X = a and a =⇒ a in zero steps.
Induction step. Let w ∈ [ϕk(⊥)]X with k > 1 and w /∈ [ϕk−1(⊥)]X . Then X = A ∈ N and

accordingly
w ∈ ϕA(ϕk−1(⊥)) =

⋃
A→X1...X`∈R

[ϕk−1(⊥)]X1 . . . [ϕ
k−1(⊥)]X`

.

8 A. Okhotin, “Formal grammars” (chapter 2 draft, September 10, 2014)

This means that there exists such a rule A→ X1 . . . X` and such a partition w = w1 . . . w`, that
wi ∈ [ϕk−1(⊥)]Xi for each i. Then, by the induction hypothesis, Xi can be rewritten to wi.
Using these rewritings, A can be rewritten to w as follows:

A =⇒ X1 . . . X` =⇒∗ w1 . . . w` = w.

2.2 Examples

What can ordinary grammars do? They can form parse tree matching remote substrings to
each other, thus counting them.

Example 2.3. The language { anbn | n > 0} is described by the following grammar.

S → aSb | ε

Example 2.4. The language { anb2n | n > 0} is described by the following grammar.

S → aSbb | ε

a ba b

S→aSb

S→aSb

S→ε
a ba b

S→aSbb

S→aSbb

S→ε
b b

Figure 2.2: (left) A parse tree of the string aabb according to the grammar in Example 2.3;
(right) A parse tree of aabbbb according to the grammar in Example 2.4.

Example 2.5. The language { ambn|m > 0, m 6 n 6 2m} is described by the following grammar.

S → aSb | aSbb | ε

Example 2.6. The language L = {w | w ∈ {a, b}∗, |w|a = |w|b} is described by the following
grammar.

S → SS | aSb | bSa | ε

Proof. The claim that this grammar generates the given language requires an argument. All
strings generated by the grammar are in L. To see that every string belonging to the language is
generated by the grammar, let w ∈ L and consider the function f : {0, 1, . . . , |w|} → Z described
by f(|u|) = |u|a − |u|b for every partition w = uv. Then either it has an intermediate zero, thus
w is obtained by the rule S → SS, or it doesn’t, in which case either all its values are positive,
or all are negative. In the former case, it must begin with a and end with b, and therefore is
generated by the rule S → aSb.

Ordinary grammars 9

Example 2.7. The language of palindromes {w | w ∈ {a, b}∗, w = wR} is described by the
following grammar.

S → aSa | bSb | a | b | ε

Example 2.8. The language { ambm+nan | m,n > 0} is described by the following grammar,
which treats a string ambm+nan as a concatenation (ambm)(bnan), and defines the two parts
separately, the first by A and the second by B.

S → AB

A→ aAb | ε
B → bBa | ε

S→AB

a b b ab a

B→bBa

B→bBa
A→aAb

B→εA→ε

Figure 2.3: A parse tree of the string abbbaa according to the grammar in Example 2.8.

Example 2.9. Let Σ = {a, b}. The language {ww | w ∈ {a, b}∗} is described by the following
grammar.

S → AB | BA | O
A→ XAX | a
B → XBX | b
X → a | b
O → XXO | X

(see Figure 2.4)

Example 2.10. The language { ak1b . . . ak`b | ` > 1, k1, . . . , k` > 0, ∃i : ki = `} is described by
the following grammar.

S → BC

A→ aA | b
B → ABa | ε
C → aCA | ab

(see Figure 2.5)

10 A. Okhotin, “Formal grammars” (chapter 2 draft, September 10, 2014)

S

B

ab b b b

BX X X X

B

A

a a b

AX X

a b

i j i j

i i j j

Figure 2.4: (left) How the grammar in Example 2.9 defines strings of the form uv with |u| = |v|
and u 6= v; (right) a parse tree of the string aabbabbb.

Lemma 2.2. Every regular language is described by an ordinary formal grammar G =
(Σ, N,R, S), in which every rule is of the form A → aB, with a ∈ Σ and B ∈ N , or of the
form A→ ε.

Proof. by simulating a DFA.

Exercises

2.2.1. Construct a grammar for {w | w ∈ {a, b}∗, |w|a < |w|b}.

2.2.2. Construct a grammar for {ww | w ∈ {a, b, c}∗}.

2.2.3. Construct a grammar for { ak1b . . . ak`b | ` > 1, ki > 0, ∃i : ki = i}.

2.3 Limitations

2.3.1 The pumping lemma

Lemma 2.3 (The pumping lemma: Bar-Hillel, Perles and Shamir [2]). For every ordinary
language L ⊆ Σ∗ there exists a constant p > 1, such that for every string w ∈ L with |w| > p
there exists a factorization w = xuyvz, where |uv| > 0 and |uyv| 6 p, such that xuiyviz ∈ L for
all i > 0.

Sketch of a proof. Let G = (Σ, N,R, S) be a grammar generating L. Let m = maxA→α∈R |α|
and define p = m|N | + 1.

Consider any string w ∈ L of length at least p and consider its parse tree. Let an internal
node s in the tree be called non-trivial if the partitition of its subtree induced by its sons non-
trivially divides the leaves (that is, it is not the case that one of the sons has all the leaves and
the others have none).

Ordinary grammars 11

a b

A

A

a

A

a b

A

A

a a a a

B

B→ε

b a

C

C

b

A

A

B

S

Figure 2.5: (left) A parse tree of the string w = aababaaaabab according to the grammar in
Example 2.10.

Then the parse tree should contain a path with at least |N |+1 non-trivial nodes, some symbol
A ∈ N must repeat twice in this path and the section of the tree between these two instances of
A can be repeated 0 or more times, thus obtaining parse trees of xuiyviz. This section of the
tree represents a derivation of uAv from A.

Example 2.11. The language L = { anbncn | n > 0} is not ordinary.

Proof. Suppose it is, and let p > 1 be the constant given by the pumping lemma. Consider
w = apbpcp. Then there exists a factorization w = xuyvz. There are several cases:

• Either u or v is not in a∗ ∪ b∗ ∪ c∗, that is, the string spans over the boundary between as,
bs and cs. Then xu2yv2z /∈ a∗b∗c∗ and cannot be in L.

• If u, v ∈ a∗, then xyz = ap−|uv|bpcp /∈ L. The cases of u, v ∈ b∗ and u, v ∈ c∗ are similar.

• If u ∈ a∗ and v ∈ b∗, then xu0yv0z = ap−|u|bp−|v|cp, which is not in L because p− |u| 6= p
or p− |v| 6= p. The case of u ∈ b∗ and v ∈ c∗ is similar.

In each case a contradiction is obtained.

Example 2.12 (Floyd [7], here “ported” from Algol 60 to C). Consider that the following string
is a valid C program if and only if i = j = k.

main() { int x . . . x︸ ︷︷ ︸
i>1

; x . . . x︸ ︷︷ ︸
j>1

= x . . . x︸ ︷︷ ︸
k>1

; }

Then there is no ordinary grammar for the set of well-formed programs in C.

Lemma 2.4 (Ogden’s lemma [16]). For every ordinary language L ⊆ Σ∗ there exists a constant
p > 1, such that for every string w ∈ L with |w| > p and for every set P ⊆ {1, . . . , |w|} of
distinguished positions in w, with |P | > p, there exists a factorization w = xuyvz, where

12 A. Okhotin, “Formal grammars” (chapter 2 draft, September 10, 2014)

• uv contains at least one distinguished position,

• uyv contains at most p distinguished positions,

such that xuiyviz ∈ L for all i > 0.

Proof. By the same argument, in which non-trivial nodes are defined by having a non-trivial
partition of distinguished leaves in a subtree.

Example 2.13. The language L = { ambncn |m,n > 0, m 6= n} is not described by any ordinary
grammar.

Proof. Suppose it is, and let p be the constant given by the pumping lemma. Consider the string
w = ap+p!bpcp with distinguished positions bp.

Example 2.14 (Bader and Moura [1]). The language { abp | p is prime} ∪ ab∗ satisfies Ogden’s
lemma, but is not described by any ordinary grammar.

Proof. TBW.

This example motivates an even stronger pumping lemma, which also features excluded
positions.

Lemma 2.5 (Bader and Moura [1]). For every ordinary language L ⊆ Σ∗ there exists a constant
p > 1, such that for every string w ∈ L and for every two sets P,Q ⊆ {1, . . . , |w|} of distinguished
and excluded positions in w, which satisfy |P | > p|Q|+1, there exists a factorization w = xuyvz,
where

• uv contains at least one distinguished position and no excluded positions;

• if d is the number of distinguished positions in uyv and e is the number of excluded positions
in uyv, then d 6 ne+1,

and xuiyviz ∈ L for all i > 0.

2.4 Closure properties

2.5 Normal forms

Chapter 13

Selected theoretical topics

13.1 Homomorphic characterizations

13.2 Inverse homomorphic characterizations

13

Bibliography

[1] C. Bader, A. Moura, “A generalization of Ogden’s lemma”, Journal of the ACM, 29:2 (1982),
404–407.

[2] Y. Bar-Hillel, M. Perles, E. Shamir, “On formal properties of simple phrase-structure
grammars”, Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung, 14
(1961), 143–177.

[3] N. Chomsky, “Three models for the description of language”, IRE Transactions on Infor-
mation Theory 2:3 (1956), 113–124.

[4] N. Chomsky, “On certain formal properties of grammars”, Information and Control, 2:2
(1959), 137–167.

[5] N. Chomsky, M. P. Schützenberger, “The algebraic theory of context-free languages”, in:
Braffort, Hirschberg (Eds.), Computer Programming and Formal Systems, North-Holland
Publishing Company, Amsterdam, 1963, 118–161.

[6] J. Engelfriet, “An elementary proof of double Greibach normal form”, Information Processing
Letters, 44:6 (1992), 291–293.

[7] R. W. Floyd, “On the non-existence of a phrase structure grammar for ALGOL 60”, Com-
munications of the ACM, 5 (1962), 483–484.

[8] S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw-Hill, 1966.

[9] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal of the
ACM, 9 (1962), 350–371.

[10] S. Ginsburg, G. Rose, , “Operations which preserve definability in languages”, Journal of
the ACM, 10:2 (1963), 175–195.

[11] S. A. Greibach, “A new normal-form theorem for context-free phrase structure grammars”,
Journal of the ACM, 12 (1965), 42–52.

[12] S. A. Greibach, “The hardest context-free language”, SIAM Journal on Computing, 2:4
(1973), 304–310.

[13] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages and Computa-
tion, Addison-Wesley, 1979.

[14] R. Kowalski, Logic for Problem Solving, North-Holland, Amsterdam, 1979.

[15] A. N. Maslov, “Cyclic shift operation for languages”, Problems of Information Transmission,
9 (1973), 333–338.

14

http://dx.doi.org/10.1145/322307.322315
http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://dx.doi.org/10.1016/0020-0190(92)90101-Z
http://dx.doi.org/10.1145/368834.368898
http://dx.doi.org/10.1145/321127.321132
http://doi.acm.org/10.1145/321160.321167
http://dx.doi.org/10.1145/321250.321254
http://dx.doi.org/10.1137/0202025

Bibliography 15

[16] W. F. Ogden, “A helpful result for proving inherent ambiguity”, Mathematical Systems
Theory 2:3 (1968), 191–194.

[17] T. Oshiba, “Closure property of the family of context-free languages under the cyclic shift
operation”, Transactions of IECE, 55D (1972), 119–122.

[18] D. J. Rozenkrantz, “Matrix equations and normal forms for context-free grammars”, Journal
of the ACM, 14:3 (1967), 501–507.

[19] S. Scheinberg, “Note on the boolean properties of context free languages”, Information and
Control, 3 (1960), 372-375.

[20] F. J. Urbanek, “On Greibach normal form construction”, Theoretical Computer Science, 40
(1985), 315–317.

http://dx.doi.org/10.1145/321406.321412
http://dx.doi.org/10.1016/S0019-9958(60)90965-7
http://dx.doi.org/10.1016/0304-3975(85)90173-2

	Ordinary grammars
	Definitions by rewriting, by deduction, by parse trees and by equations
	Definition by string rewriting
	Definition by deduction
	Definition by parse trees
	Towards a definition by equations
	Definition by language equations
	Equivalence of the four definitions

	Examples
	Limitations
	The pumping lemma

	Closure properties
	Normal forms

	Selected theoretical topics
	Homomorphic characterizations
	Inverse homomorphic characterizations

	Bibliography

