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Ranking methods

1 Content-based

Term-based
Semantic

2 Link-based (web search)

3 Learning to rank
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Problems with term-based retrieval

1 Synonymy

2 Polysemy
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Vector space model

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Manning et al., “Introduction to Information Retrieval”
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Singular value decomposition

C is a m × n matrix (term-document)

C can be decomposed as

C = UΣV T

U is a m ×m unitary matrix

Σ is a diagonal m × n matrix with singular values

V T is a n × n unitary matrix
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SVD example: original matrix

Online edition (c)�2009 Cambridge UP

414 18 Matrix decompositions and latent semantic indexing

ments, or between two terms. Note especially that Equation (18.21) does not
in any way depend on q⃗ being a query; it is simply a vector in the space of
terms. This means that if we have an LSI representation of a collection of
documents, a new document not in the collection can be “folded in” to this
representation using Equation (18.21). This allows us to incrementally add
documents to an LSI representation. Of course, such incremental addition
fails to capture the co-occurrences of the newly added documents (and even
ignores any new terms they contain). As such, the quality of the LSI rep-
resentation will degrade as more documents are added and will eventually
require a recomputation of the LSI representation.

The fidelity of the approximation of Ck to C leads us to hope that the rel-
ative values of cosine similarities are preserved: if a query is close to a doc-
ument in the original space, it remains relatively close in the k-dimensional
space. But this in itself is not sufficiently interesting, especially given that
the sparse query vector q⃗ turns into a dense query vector q⃗k in the low-
dimensional space. This has a significant computational cost, when com-
pared with the cost of processing q⃗ in its native form.

✎ Example 18.4: Consider the term-document matrix C =

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
voyage 1 0 0 1 1 0
trip 0 0 0 1 0 1

Its singular value decomposition is the product of three matrices as below. First we
have U which in this example is:

1 2 3 4 5
ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
voyage −0.70 0.35 0.15 −0.58 0.16
trip −0.26 0.65 −0.41 0.58 −0.09

When applying the SVD to a term-document matrix, U is known as the SVD term
matrix. The singular values are Σ =

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

Finally we have VT , which in the context of a term-document matrix is known as
the SVD document matrix:

Manning et al., “Introduction to Information Retrieval”
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SVD example: decomposition
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require a recomputation of the LSI representation.

The fidelity of the approximation of Ck to C leads us to hope that the rel-
ative values of cosine similarities are preserved: if a query is close to a doc-
ument in the original space, it remains relatively close in the k-dimensional
space. But this in itself is not sufficiently interesting, especially given that
the sparse query vector q⃗ turns into a dense query vector q⃗k in the low-
dimensional space. This has a significant computational cost, when com-
pared with the cost of processing q⃗ in its native form.

✎ Example 18.4: Consider the term-document matrix C =

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
voyage 1 0 0 1 1 0
trip 0 0 0 1 0 1

Its singular value decomposition is the product of three matrices as below. First we
have U which in this example is:

1 2 3 4 5
ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
voyage −0.70 0.35 0.15 −0.58 0.16
trip −0.26 0.65 −0.41 0.58 −0.09

When applying the SVD to a term-document matrix, U is known as the SVD term
matrix. The singular values are Σ =

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

Finally we have VT , which in the context of a term-document matrix is known as
the SVD document matrix:
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d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

By “zeroing out” all but the two largest singular values of Σ, we obtain Σ2 =

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

From this, we compute C2 =

d1 d2 d3 d4 d5 d6

1 −1.62 −0.60 −0.44 −0.97 −0.70 −0.26
2 −0.46 −0.84 −0.30 1.00 0.35 0.65
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

Notice that the low-rank approximation, unlike the original matrix C, can have
negative entries.

Examination of C2 and Σ2 in Example 18.4 shows that the last 3 rows of
each of these matrices are populated entirely by zeros. This suggests that
the SVD product UΣVT in Equation (18.18) can be carried out with only two
rows in the representations of Σ2 and VT ; we may then replace these matrices
by their truncated versions Σ′

2 and (V′)T. For instance, the truncated SVD
document matrix (V′)T in this example is:

d1 d2 d3 d4 d5 d6

1 −1.62 −0.60 −0.44 −0.97 −0.70 −0.26
2 −0.46 −0.84 −0.30 1.00 0.35 0.65

Figure 18.3 illustrates the documents in (V′)T in two dimensions. Note
also that C2 is dense relative to C.

We may in general view the low-rank approximation of C by Ck as a con-
strained optimization problem: subject to the constraint that Ck have rank at
most k, we seek a representation of the terms and documents comprising C
with low Frobenius norm for the error C − Ck. When forced to squeeze the
terms/documents down to a k-dimensional space, the SVD should bring to-
gether terms with similar co-occurrences. This intuition suggests, then, that
not only should retrieval quality not suffer too much from the dimension
reduction, but in fact may improve.

Manning et al., “Introduction to Information Retrieval”
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Low-rank approximation
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LSI/LSA example: low-rank approximation
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Notice that the low-rank approximation, unlike the original matrix C, can have
negative entries.

Examination of C2 and Σ2 in Example 18.4 shows that the last 3 rows of
each of these matrices are populated entirely by zeros. This suggests that
the SVD product UΣVT in Equation (18.18) can be carried out with only two
rows in the representations of Σ2 and VT ; we may then replace these matrices
by their truncated versions Σ′

2 and (V′)T. For instance, the truncated SVD
document matrix (V′)T in this example is:

d1 d2 d3 d4 d5 d6

1 −1.62 −0.60 −0.44 −0.97 −0.70 −0.26
2 −0.46 −0.84 −0.30 1.00 0.35 0.65

Figure 18.3 illustrates the documents in (V′)T in two dimensions. Note
also that C2 is dense relative to C.

We may in general view the low-rank approximation of C by Ck as a con-
strained optimization problem: subject to the constraint that Ck have rank at
most k, we seek a representation of the terms and documents comprising C
with low Frobenius norm for the error C − Ck. When forced to squeeze the
terms/documents down to a k-dimensional space, the SVD should bring to-
gether terms with similar co-occurrences. This intuition suggests, then, that
not only should retrieval quality not suffer too much from the dimension
reduction, but in fact may improve.
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2 and (V′)T. For instance, the truncated SVD
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d1 d2 d3 d4 d5 d6
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Manning et al., “Introduction to Information Retrieval”
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LSI/LSA example: vector space

Online edition (c)�2009 Cambridge UP

416 18 Matrix decompositions and latent semantic indexing

−0.5−1.0−1.5

0.5

1.0

−0.5

−1.0

dim 2

dim 1

×

d1

×

d2

× d3

×

d4

×

d5

× d6

! Figure 18.3 The documents of Example 18.4 reduced to two dimensions in (V ′)T.

Dumais (1993) and Dumais (1995) conducted experiments with LSI on
TREC documents and tasks, using the commonly-used Lanczos algorithm
to compute the SVD. At the time of their work in the early 1990’s, the LSI
computation on tens of thousands of documents took approximately a day
on one machine. On these experiments, they achieved precision at or above
that of the median TREC participant. On about 20% of TREC topics their
system was the top scorer, and reportedly slightly better on average than
standard vector spaces for LSI at about 350 dimensions. Here are some con-
clusions on LSI first suggested by their work, and subsequently verified by
many other experiments.

• The computational cost of the SVD is significant; at the time of this writ-
ing, we know of no successful experiment with over one million docu-
ments. This has been the biggest obstacle to the widespread adoption to
LSI. One approach to this obstacle is to build the LSI representation on a
randomly sampled subset of the documents in the collection, following
which the remaining documents are “folded in” as detailed with Equa-
tion (18.21).

Manning et al., “Introduction to Information Retrieval”
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Latent semantic indexing/analysis
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Unigram language model
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12.1 Language models 239

Model M1 Model M2
the 0.2 the 0.15
a 0.1 a 0.12
frog 0.01 frog 0.0002
toad 0.01 toad 0.0001
said 0.03 said 0.03
likes 0.02 likes 0.04
that 0.04 that 0.04
dog 0.005 dog 0.01
cat 0.003 cat 0.015
monkey 0.001 monkey 0.002
. . . . . . . . . . . .

! Figure 12.3 Partial specification of two unigram language models.

✎ Example 12.1: To find the probability of a word sequence, we just multiply the
probabilities which the model gives to each word in the sequence, together with the
probability of continuing or stopping after producing each word. For example,

P(frog said that toad likes frog) = (0.01× 0.03× 0.04× 0.01× 0.02× 0.01)(12.2)
×(0.8× 0.8× 0.8× 0.8× 0.8× 0.8× 0.2)

≈ 0.000000000001573

As you can see, the probability of a particular string/document, is usually a very
small number! Here we stopped after generating frog the second time. The first line of
numbers are the term emission probabilities, and the second line gives the probabil-
ity of continuing or stopping after generating each word. An explicit stop probability
is needed for a finite automaton to be a well-formed language model according to
Equation (12.1). Nevertheless, most of the time, we will omit to include STOP and
(1− STOP) probabilities (as do most other authors). To compare two models for a
data set, we can calculate their likelihood ratio, which results from simply dividing theLIKELIHOOD RATIO
probability of the data according to one model by the probability of the data accord-
ing to the other model. Providing that the stop probability is fixed, its inclusion will
not alter the likelihood ratio that results from comparing the likelihood of two lan-
guage models generating a string. Hence, it will not alter the ranking of documents.2
Nevertheless, formally, the numbers will no longer truly be probabilities, but only
proportional to probabilities. See Exercise 12.4.

✎ Example 12.2: Suppose, now, that we have two language models M1 and M2,
shown partially in Figure 12.3. Each gives a probability estimate to a sequence of

2. In the IR context that we are leading up to, taking the stop probability to be fixed across
models seems reasonable. This is because we are generating queries, and the length distribution
of queries is fixed and independent of the document from which we are generating the language
model.

P(t) = P(t | M)

Manning et al., “Introduction to Information Retrieval”
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Unigram language model
BLEI, NG, AND JORDAN
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Figure 3: Graphical model representation of different models of discrete data.

4.2 Mixture of unigrams

If we augment the unigram model with a discrete random topic variable z (Figure 3b), we obtain a
mixture of unigrams model (Nigam et al., 2000). Under this mixture model, each document is gen-
erated by first choosing a topic z and then generating N words independently from the conditional
multinomial p(w |z). The probability of a document is:

p(w) =∑
z
p(z)

N

∏
n=1

p(wn |z).

When estimated from a corpus, the word distributions can be viewed as representations of topics
under the assumption that each document exhibits exactly one topic. As the empirical results in
Section 7 illustrate, this assumption is often too limiting to effectively model a large collection of
documents.

In contrast, the LDA model allows documents to exhibit multiple topics to different degrees.
This is achieved at a cost of just one additional parameter: there are k� 1 parameters associated
with p(z) in the mixture of unigrams, versus the k parameters associated with p(θ |α) in LDA.

4.3 Probabilistic latent semantic indexing

Probabilistic latent semantic indexing (pLSI) is another widely used document model (Hofmann,
1999). The pLSI model, illustrated in Figure 3c, posits that a document label d and a word wn are

1000

Blei et al., “Latent Dirichlet Allocation”
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Mixture of unigrams

LATENT DIRICHLET ALLOCATION

TheWilliam Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which
the word is putatively generated.

1009

P(t) =
∑

z

P(t | z)P(z)

Blei et al., “Latent Dirichlet Allocation”
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Mixture of unigrams
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under the assumption that each document exhibits exactly one topic. As the empirical results in
Section 7 illustrate, this assumption is often too limiting to effectively model a large collection of
documents.

In contrast, the LDA model allows documents to exhibit multiple topics to different degrees.
This is achieved at a cost of just one additional parameter: there are k� 1 parameters associated
with p(z) in the mixture of unigrams, versus the k parameters associated with p(θ |α) in LDA.

4.3 Probabilistic latent semantic indexing

Probabilistic latent semantic indexing (pLSI) is another widely used document model (Hofmann,
1999). The pLSI model, illustrated in Figure 3c, posits that a document label d and a word wn are
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Probabilistic LSA

LATENT DIRICHLET ALLOCATION

TheWilliam Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which
the word is putatively generated.
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P(t | d) =
∑

z

P(t | z)P(z | d)

Blei et al., “Latent Dirichlet Allocation”
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Probabilistic LSA

BLEI, NG, AND JORDAN
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Figure 3: Graphical model representation of different models of discrete data.

4.2 Mixture of unigrams

If we augment the unigram model with a discrete random topic variable z (Figure 3b), we obtain a
mixture of unigrams model (Nigam et al., 2000). Under this mixture model, each document is gen-
erated by first choosing a topic z and then generating N words independently from the conditional
multinomial p(w |z). The probability of a document is:

p(w) =∑
z
p(z)

N

∏
n=1

p(wn |z).

When estimated from a corpus, the word distributions can be viewed as representations of topics
under the assumption that each document exhibits exactly one topic. As the empirical results in
Section 7 illustrate, this assumption is often too limiting to effectively model a large collection of
documents.

In contrast, the LDA model allows documents to exhibit multiple topics to different degrees.
This is achieved at a cost of just one additional parameter: there are k� 1 parameters associated
with p(z) in the mixture of unigrams, versus the k parameters associated with p(θ |α) in LDA.

4.3 Probabilistic latent semantic indexing

Probabilistic latent semantic indexing (pLSI) is another widely used document model (Hofmann,
1999). The pLSI model, illustrated in Figure 3c, posits that a document label d and a word wn are
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Latent Dirichlet allocation

Blei, “Probabilistic topic models”
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Latent Dirichlet allocation

P(t | d) =
K∑

z=1

P(t | z , φ)P(z | d , θ)

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
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IR conferences

ACM Conference on Research and Development in
Information Retrieval (SIGIR)

ACM Conference on Information Knowledge and Management
(CIKM)

ACM Conference on Web Search and Data Mining (WSDM)

European Conference on Information Retrieval (ECIR)

ACM International Conference on Theory of Information
Retrieval (ICTIR)
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IR journals

ACM Transactions o Information Systems (TOIS)

Information Retrieval Journal (IRJ)

Information Processing and Management (IPM)
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Surveys

Foundations and Trends in Information Retrieval (FnTIR)

Synthesis Lectures on Information Concepts, Retrieval, and
Services by Morgan&Claypool Publishers
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CIKM 2017

Evaluation: offline and online

Ranking: deep learning, online LTR, short text retrieval

Infrastructure: query processing, index compression, efficiency

Temporal data: news, online learning, stream mining

User-related: crowdsourcing, user behavior, user
characteristics, privacy

Structured: graphs, networks, events and entities

Classics: clustering, classification, summarization

Deep learning

Recommender systems, collaborative filtering

Health analytics
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Word2vec
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.
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it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.
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Word2vec algorithm

1 Choose the length of embeddings

2 Initialize embeddings randomly

3 Update embeddings using gradient descent by optimizing
CBOW or Skip-gram
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Word2vec example
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Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

which is used to replace every log P (wO|wI) term in the Skip-gram objective. Thus the task is to
distinguish the target word wO from draws from the noise distribution Pn(w) using logistic regres-
sion, where there are k negative samples for each data sample. Our experiments indicate that values
of k in the range 5–20 are useful for small training datasets, while for large datasets the k can be as
small as 2–5. The main difference between the Negative sampling and NCE is that NCE needs both
samples and the numerical probabilities of the noise distribution, while Negative sampling uses only
samples. And while NCE approximately maximizes the log probability of the softmax, this property
is not important for our application.

Both NCE and NEG have the noise distributionPn(w) as a free parameter. We investigated a number
of choices for Pn(w) and found that the unigram distribution U(w) raised to the 3/4rd power (i.e.,
U(w)3/4/Z) outperformed significantly the unigram and the uniform distributions, for both NCE
and NEG on every task we tried including language modeling (not reported here).

2.3 Subsampling of Frequent Words

In very large corpora, the most frequent words can easily occur hundreds of millions of times (e.g.,
“in”, “the”, and “a”). Such words usually provide less information value than the rare words. For
example, while the Skip-gram model benefits from observing the co-occurrences of “France” and
“Paris”, it benefits much less from observing the frequent co-occurrences of “France” and “the”, as
nearly every word co-occurs frequently within a sentence with “the”. This idea can also be applied
in the opposite direction; the vector representations of frequent words do not change significantly
after training on several million examples.

To counter the imbalance between the rare and frequent words, we used a simple subsampling ap-
proach: each word wi in the training set is discarded with probability computed by the formula

P (wi) = 1 −
√

t

f(wi)
(5)

4
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Word2vec for retrieval

Average word embeddings (centroids) for queries and
documents

Cosine similarity

Works best for short documents
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Deep structured semantic model

DNN model is used for Web document ranking as follows: 1) to 
map term vectors to their corresponding semantic concept vectors; 
2) to compute the relevance score between a document and a 
query as cosine similarity of their corresponding semantic concept 
vectors; rf. Eq. (3) to (5).  

More formally, if we denote ! as the input term vector, " as 
the output vector, #

!
, % & 1,… , ) * 1, as the intermediate hidden 
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where we use the 2345 as the activation function at the output 
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The semantic relevance score between a query 8 and a document 
9 is then measured as: 
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where "
'

 and "
(

 are the concept vectors of the query and the 
document, respectively. In Web search, given the query, the 
documents are sorted by their semantic relevance scores.  

Conventionally, the size of the term vector, which can be 
viewed as the raw bag-of-words features in IR, is identical to that 
of the vocabulary that is used for indexing the Web document 
collection. The vocabulary size is usually very large in real-world 
Web search tasks. Therefore, when using term vector as the input, 
the size of the input layer of the neural network would be 
unmanageable for inference and model training. To address this 
problem, we have developed a method called “word hashing” for 
the first layer of the DNN, as indicated in the lower portion of 
Figure 1. This layer consists of only linear hidden units in which 
the weight matrix of a very large size is not learned. In the 
following section, we describe the word hashing method in detail. 

3.2 Word Hashing  
The word hashing method described here aims to reduce the 
dimensionality of the bag-of-words term vectors. It is based on 
letter n-gram, and is a new method developed especially for our 
task. Given a word (e.g. good), we first add word starting and 
ending marks to the word (e.g. #good#). Then, we break the word 
into letter n-grams (e.g. letter trigrams: #go, goo, ood, od#). 
Finally, the word is represented using a vector of letter n-grams.  

One problem of this method is collision, i.e., two different 
words could have the same letter n-gram vector representation. 
Table 1 shows some statistics of word hashing on two 
vocabularies. Compared with the original size of the one-hot 
vector, word hashing allows us to represent a query or a document 
using a vector with much lower dimensionality. Take the 40K-
word vocabulary as an example. Each word can be represented by 
a 10,306-dimentional vector using letter trigrams, giving a four-
fold dimensionality reduction with few collisions. The reduction 
of dimensionality is even more significant when the technique is 
applied to a larger vocabulary. As shown in Table 1, each word in 
the 500K-word vocabulary can be represented by a 30,621 
dimensional vector using letter trigrams, a reduction of 16-fold in 
dimensionality with a negligible collision rate of 0.0044% 
(22/500,000).  

While the number of English words can be unlimited, the 
number of letter n-grams in English (or other similar languages) is 
often limited. Moreover, word hashing is able to map the 
morphological variations of the same word to the points that are 
close to each other in the letter n-gram space. More importantly, 
while a word unseen in the training set always causes difficulties 
in word-based representations, it is not the case where the letter n-
gram based representation is used. The only risk is the minor 
representation collision as quantified in Table 1. Thus, letter n-
gram based word hashing is robust to the out-of-vocabulary 
problem, allowing us to scale up the DNN solution to the Web 
search tasks where extremely large vocabularies are desirable. We 
will demonstrate the benefit of the technique in Section 4. 

In our implementation, the letter n-gram based word hashing 
can be viewed as a fixed (i.e., non-adaptive) linear transformation, 

Figure 1: Illustration of the DSSM. It uses a DNN to map high-dimensional sparse text features into low-dimensional dense features in a semantic space. The 
first hidden layer, with 30k units, accomplishes word hashing. The word-hashed features are then projected through multiple layers of non-linear projections. 
The final layer’s neural activities in this DNN form the feature in the semantic space. 

Huang et al. “Learning Deep Structured Semantic Models for Web Search using Clickthrough Data”
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Experimental comparisonlayers from one to three raises the NDCG scores by 0.4-0.5 point 
which are statistically significant, while there is no significant 
difference between linear and non-linear models if both are one-
layer shallow models (Row 10 vs. Row 11). 

# Models NDCG@1 NDCG@3 NDCG@10 
1 TF-IDF 0.319 0.382 0.462 
2 BM25 0.308 0.373 0.455 
3 WTM 0.332 0.400 0.478 
4 LSA 0.298 0.372 0.455 
5 PLSA 0.295 0.371 0.456 
6 DAE 0.310 0.377 0.459 
7 BLTM-PR 0.337 0.403 0.480 
8 DPM 0.329 0.401 0.479 
9 DNN 0.342 0.410 0.486 

10 L-WH linear 0.357 0.422 0.495 
11 L-WH non-linear 0.357 0.421 0.494 
12 L-WH DNN 0.362 0.425 0.498 
Table 2: Comparative results with the previous state of the art 
approaches and various settings of DSSM.  

5. CONCLUSIONS 
We present and evaluate a series of new latent semantic models, 
notably those with deep architectures which we call the DSSM. 
The main contribution lies in our significant extension of the 
previous latent semantic models (e.g., LSA) in three key aspects. 
First, we make use of the clickthrough data to optimize the 
parameters of all versions of the models by directly targeting the 
goal of document ranking. Second, inspired by the deep learning 
framework recently shown to be highly successful in speech 
recognition [5][13][14][16][18], we extend the linear semantic 
models to their nonlinear counterparts using multiple hidden-
representation layers. The deep architectures adopted have further 
enhanced the modeling capacity so that more sophisticated 
semantic structures in queries and documents can be captured and 
represented. Third, we use a letter n-gram based word hashing 
technique that proves instrumental in scaling up the training of the 
deep models so that very large vocabularies can be used in 
realistic web search. In our experiments, we show that the new 
techniques pertaining to each of the above three aspects lead to 
significant performance improvement on the document ranking 
task. A combination of all three sets of new techniques has led to 
a new state-of-the-art semantic model that beats all the previously 
developed competing models with a significant margin. 
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DNN – no semantic hashing

L-WH linear – semantic hashing, NO non-linear activation functions

L-WH non-linear – semantic hashing, non-linear activation functions

L-WH DNN – full network
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Semantic retrieval summary

Latent semantic indexing/analysis

Topic modeling (pLSA, LDA)

Words embeddings (word2vec)

Neural networks (DSSM)
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Ranking methods

1 Content-based

Term-based
Semantic

2 Link-based (web search)

3 Learning to rank
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