Logistic Multiclass Classification

March 13, 2013

Exponential Family

$$
p(y ; \eta)=b(y) \exp \left(\eta^{\top} T(y)-a(\eta)\right)
$$

- η - natural parameter (actual parameter of distribution)
- $a(\eta), b(y)$ - specify the specific form of the distribution
- $T(y)$ - might be a vector

General Lenear Models

Assume

- $y \mid x ; \theta \operatorname{ExpFamily}(\eta)$
- Given x, goal is to output $E[T(y) \mid x]$.
- Want $h(x)=E[T(y) \mid x]$
- $\eta=\theta^{T}{ }_{x}$

Multiclass classification One vs All

One-vs-all (one-vs-rest):

Multiclass classification All vs All

Multiclass classification

- We whould like to classify instances into more than two classes

$$
y \in\{1,2, \ldots, k\}
$$

- Lets derive GLM under assumption that $y \mid x$ is Multinomial
- The parameters of Multinomial distribution are $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$, where

$$
\begin{gathered}
\phi_{i}=p(y=i ; \phi) \\
p(y=k ; \phi)=1-\sum_{i=1}^{k-1} \phi_{i}
\end{gathered}
$$

Notation

To express the multinomial as an exponential family distribution, we will define $T(y) \in R^{k-1}$ as follows
$T(1)=\left[\begin{array}{c}1 \\ 0 \\ \cdots \\ 0\end{array}\right] \quad T(2)=\left[\begin{array}{c}0 \\ 1 \\ \cdots \\ 0\end{array}\right]$

$$
T(k-1)=\left[\begin{array}{c}
0 \\
0 \\
\cdots \\
1
\end{array}\right] \quad T(k)=\left[\begin{array}{c}
0 \\
0 \\
\cdots \\
0
\end{array}\right]
$$

- Let $(T(y))_{i}$ - ith coordinate of vector $\mathrm{T}(\mathrm{y})$
- Let $1\{y=i\}$ - indicator function that returns 1 if expression in $\}$ is true and 0 otherwise
- $(T(y))_{i}=1\{y=i\}$
- $E\left[(T(y))_{i}\right]=P(y=i)=\phi_{i}$

Multinomial is a Member of Exponential Family

$$
\begin{aligned}
p(y ; \phi)= & \phi_{1}^{1\{y=1\}} \phi_{2}^{1\{y=2\}} \ldots \phi_{k}^{1\{y=k\}} \\
= & \cdots \\
= & \exp \left((T(y))_{1} \log \left(\phi_{1} / \phi_{k}\right)+(T(y))_{2} \log \left(\phi_{2} / \phi_{k}\right)+\right. \\
& \left.\cdots+(T(y))_{k-1} \log \left(\phi_{k-1} / \phi_{k}\right)+\log \left(\phi_{k}\right)\right) \\
= & b(y) \exp \left(\eta^{T} T(y)-a(\eta)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\eta & =\left[\begin{array}{c}
\log \left(\phi_{1} / \phi_{k}\right) \\
\log \left(\phi_{2} / \phi_{k}\right) \\
\ldots \\
\log \left(\phi_{k-1} / \phi_{k}\right)
\end{array}\right] \\
a(\eta) & =-\log \left(\phi_{k}\right) \\
b(y) & =1
\end{aligned}
$$

Softmax Function

$$
\eta=\left[\begin{array}{c}
\eta_{1} \\
\eta_{2} \\
\cdots \\
\eta_{k-1} \\
\eta_{k}
\end{array}\right]=\left[\begin{array}{c}
\log \left(\phi_{1} / \phi_{k}\right) \\
\log \left(\phi_{2} / \phi_{k}\right) \\
\cdots \\
\log \left(\phi_{k-1} / \phi_{k}\right) \\
\log \left(\phi_{k} / \phi_{k}\right)
\end{array}\right]
$$

Using that $\sum_{j=1}^{k} \phi_{j}=1$ obtain

$$
\phi_{i}=\frac{e^{\eta_{i}}}{\sum_{j=1}^{k} e^{\eta_{j}}}
$$

$$
\eta_{k}=\log \left(\phi_{k} / \phi_{k}\right)=0
$$

Softmax Regression

By assumption $\eta_{i}=\theta_{i}^{T} x$, where $\theta_{1}, \ldots, \theta_{k-1} \in R^{n+1}, \theta_{k}=0$ so that $\theta_{k}^{T} x=0$

$$
\begin{gathered}
p(y=i \mid x ; \theta)=\phi_{i}=\frac{e^{\theta_{i}^{T} x}}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x}} \\
h_{\theta}(x)=E[T(y) \mid x ; \theta]=E\left[\begin{array}{c}
\frac{e^{\theta_{1}^{T} x}}{\sum_{j=1}^{k} e_{j}^{\theta_{j}^{T} x}} \\
\frac{e^{\theta_{2}^{T} x}}{\sum_{j=1}^{k} e_{j}^{\theta_{j}^{T}}} \\
\cdots \\
\frac{e^{\theta_{k-1}^{T} x}}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x}}
\end{array}\right]
\end{gathered}
$$

Generative Learning

March 13, 2013

Generative learning

- Earlier we consider $p(y \mid x)$ as $h_{\theta}(x)=g\left(\theta^{T} x\right)$ - discriminative learning algorithms
- Algotithms that estimates $p(x \mid y)$ and $p(y)$ - generative learning algorithms

$$
\operatorname{argmax}_{y} p(y \mid x)=\operatorname{argmax}_{y} \frac{p(x \mid y) p(y)}{p(x)}=\operatorname{argmax}_{y} p(x \mid y) p(y)
$$

Multivariate Normal Distribution

$$
\begin{gathered}
p(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) \\
E[X]=\int_{x} x p(x ; \mu, \Sigma) d x=\mu \\
\operatorname{COV}(X)=E\left[(X-E[X])(X-E[X])^{T}\right]
\end{gathered}
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{cc}
0.6 & 0 \\
0 & 0.6
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{cc}
0.6 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

$\mu=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Sigma=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{cc}
1 & 0 \\
0 & 0.6
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{cc}
1 & 0.8 \\
0.8 & 1
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{cc}
1 & -0.5 \\
-0.5 & 1
\end{array}\right] \quad \mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{cc}
1 & -0.8 \\
-0.8 & 1
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{c}
0 \\
0.5
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{c}
1.5 \\
-0.5
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Gaussian Discriminant Analysis Model

Intuition: predict $\operatorname{argmax}_{y} p(y \mid x)=\operatorname{argmax}_{y} \frac{p(x \mid y) p(y)}{p(x)}$ by modeling $p(x \mid y)$

- y : Bernoulli (ϕ)
- $x \mid y=0:\left(\mu_{0}, \Sigma\right)$
- $x \mid y=1:\left(\mu_{1}, \Sigma\right)$

$$
p(y)=\phi^{y}(1-\phi)^{1-y}
$$

$p(x \mid y=0)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{0}\right)^{T} \Sigma^{-1}\left(x-\mu_{0}\right)\right)$
$p(x \mid y=1)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{1}\right)^{T} \Sigma^{-1}\left(x-\mu_{1}\right)\right)$

Gaussian Discriminant Analysis Model

 Log-likelihood$$
\begin{aligned}
\log L\left(\phi, \mu_{0}, \mu_{1}, \Sigma\right) & =\log \prod p\left(x^{(i)}, y^{(i)} ; \phi, \mu_{0}, \mu_{1}, \Sigma\right) \\
& =\log \prod p\left(x^{(i)} \mid y^{(i)} ; \mu_{0}, \mu_{1}, \Sigma\right) p\left(y^{(i)} ; \phi\right)
\end{aligned}
$$

$$
\begin{aligned}
\phi & =\frac{1}{m} \sum_{i=1}^{m} 1\left\{y^{(i)}=1\right\} \\
\mu_{0} & =\frac{\sum_{i=1}^{m} 1\left\{y^{(i)}=0\right\} x^{(i)}}{\sum_{i=1}^{m} 1\left\{y^{(i)}=0\right\}} \\
\mu_{1} & =\frac{\sum_{i=1}^{m} 1\left\{y^{(i)}=1\right\} x^{(i)}}{\sum_{i=1}^{m} 1\left\{y^{(i)}=1\right\}} \\
\Sigma & =\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\mu_{y^{(i)}}\right)\left(x^{(i)}-\mu_{y^{(i)}}\right)^{T} .
\end{aligned}
$$

Gaussian Discriminant Analysis
 Example

