Криптография.

1 апреля 2017 г.

1 Разделение секрета

Теорема 1.1 (Csirmaz'94). Существуют структуры доступа Γ на n участниках, такие что для любой схемы разделения секрета $\max_i \frac{H(S_i)}{H(S_0)} \ge \Omega(n/\log n)$.

Доказательство. Выберем n и k такие, что $n=2^k+k+1$, и два множества участников

$$A = \{a_1, a_2, \dots, a_k\},\$$

$$B = \{b_1, b_2, \dots, b_{2^k - 1}\}\$$

Для определения структуры доступа нам потребуются два семейства множеств. Пусть $\{A_0,A_1,A_2,\ldots,A_{2^k-1}\}$ — это все подмножества A, причём $A_0=A$ и для любых i < j выполняется $A_i \not\subseteq A_j$ (например, можно их упорядочить по уменьшению размера). Построим множества $\{B_0,B_1,B_2,\ldots,B_{2^k-1}\}$ следующим образом: $B_0=\emptyset$, $B_i=\{b_1,b_2,\ldots,b_i\}$. Теперь мы готовы определить структуру доступа Γ : $\Gamma=\{U_i\}_{i=0}^{2^k-1}$, где $U_i=A_i\cup B_i$.

Как и в предыдущих утверждениях обозначим $H(S_0)$ за h. В дальнейших рассуждениях мы будем использовать следующую нотацию: под энтропией некоторого множества участников $X = \{x_1, x_2, \dots, x_t\} \subset A \cup B$, мы будем понимать энтропию секретов, которые принадлежат участникам этого множества, т.е. $H(X) = H(S_{x_1}, S_{x_2}, \dots, S_{x_t})$.

Лемма 1.1. Для $i = \{0, 1, 2, \dots, 2^k - 2\}$

$$H(A \cup B_i) - H(B_i) \ge H(A \cup B_{i+1}) - H(B_{i+1}) + h.$$

Упражнение 1.1. Покажите, что из леммы 1.1 следует, что $H(A) \geq (2^k - 1) \cdot h$.

Упражнение 1.2. Докажите, что из предыдущего упражнения следует теорема.

Осталось доказать лемму 1.1.

Доказательство леммы 1.1. Докажем два неравенства:

- 1. $H(A_{i+1} \cup B_i) + H(B_{i+1}) \ge H(A_{i+1} \cup B_{i+1}) + H(B_i)$.
- 2. $H(A \cup B_i) + H(A_{i+1} \cup B_{i+1}) \ge H(A \cup B_{i+1}) + H(A_{i+1} \cup B_i) + h$.

Упражнение 1.3. Из двух неравенств выше получите утверждение леммы.

Упражнение 1.4. Докажите неравенство 1. [Hint: $I(x:y \mid z) \ge 0$.]

Упражнение 1.5. Докажите второе неравенство аналогично лемме 5.3 из конспекта лекций (конспект скоро появится если еще не). Рассмотрите условное распределение при известном $A_7 \cup B_7$ (подставьте вместо вопросиков нужное).

Упражнение 1.6. Соберите доказательство теоремы из леммы и упражнений (записывать не надо).

2 Другие задачи

Упражнение 2.1. Доказать, что для любой схемы разделения секреты для этой структуры $\max_i \frac{H(S_i)}{H(S_0)} \geq 3/2$.



Упражнение 2.2. Случайные функции а и в принимают значения в 3-элементном множестве, и a = b с вероятностью 2/3. Докажите, что $H(a \mid b) \leq \frac{4}{3}$. [Hint: Чуть улучшите неравенство, которое напрашивается быть здесь примененным.]