
Contents

3 Grammars with Boolean operations 2
3.1 Conjunctive grammars . 2

3.1.1 Definition by deduction . 3
3.1.2 Definition by term rewriting . 3
3.1.3 Definition by parse trees . 4
3.1.4 Definition by language equations . 5
3.1.5 Equivalence of the four definitions . 6

3.2 Examples of conjunctive grammars . 6
3.3 Normal forms for conjunctive grammars . 9

3.3.1 Eliminating null conjuncts . 9
3.3.2 Eliminating unit conjuncts . 9
3.3.3 The Chomsky normal form . 11
3.3.4 The odd normal form . 11
3.3.5 An analogue of Greibach normal form? . 13

3.4 Boolean grammars . 14
3.4.1 Intuitive definition . 14
3.4.2 Definition by language equations . 16
3.4.3 Parse trees . 17

Bibliography 18

Name index 19

1

Chapter 3

Grammars with Boolean operations

3.1 Conjunctive grammars

Conjunction corresponds to multiple conditions simultaneously. Not expressible in ordinary
grammars. Augmenting the model with an explicit conjunction operation.

First mentioned in a Master’s thesis by Szabari [6], supervised by Geffert. Later investigated
by Okhotin [2].

Definition 3.1. A conjunctive grammar is a quadruple G = (Σ, N,R, S), in which:

• Σ is the alphabet of the language being defined, that is, a finite set of symbols, from which
the strings in the language are built;

• N is a finite set of symbols representing syntactic categories defined by the grammar;

• R is a finite set of grammar rules, each of the form

A→ α1 & . . .&αm, (3.1)

with A ∈ N , m > 1 and α1, . . . , αm ∈ (Σ ∪N)∗;

• S ∈ N represents the set of syntactically well-formed sentences in the language.

For every rule (3.1), each string αi is called a conjunct, and if a grammar has a unique
conjunct in every rule, it is an ordinary grammar. A collection of rules for a single nonterminal
is written as

A→ α1,1 & . . .&α1,n1 | . . . | αn,1 & . . .&αn,mn ,

where the vertical lines are the disjunction.
Informally, a rule (3.1) states that if a string is representable as each concatenation αi, then

it has the property A.

Example 3.1. The following conjunctive grammar generates the language { anbncn | n > 0}.

S → AB&DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

The rules for the symbols A, B, C and D do not use conjunction, and have the same meaning
as in an ordinary grammar. In particular, A and C generate the languages a∗ and c∗, B defines
{ bncn |n > 0} and D defines { akbk |k > 0}. Then the rule for S represents the strings in a∗b∗c∗

that have the same number of symbols b and c (ensured by AB), as well as the same number of
symbols a and b (specified by DC). These are exactly all strings of the form anbncn.

2

Grammars with Boolean operations 3

In other words, the grammar is based upon the representation of this language as an inter-
section of two ordinary languages:

{ aibjck | j = k}︸ ︷︷ ︸
L(AB)

∩{ aibjck | i = j}︸ ︷︷ ︸
L(DC)

= { anbncn | n > 0}︸ ︷︷ ︸
L(S)

.

As in the case of ordinary grammars, the informal understanding of the meaning of a grammar
can be formalized in four equivalent ways.

3.1.1 Definition by deduction

The first definition is by a formal deduction system, which represents the logical content of
conjunctive grammars directly.

Definition 3.1(D). For a conjunctive grammar G = (Σ, N,R, S), consider elementary proposi-
tions (items) of the form “a string w has a property X”, with w ∈ Σ∗ and X ∈ Σ ∪N , denoted
by X(w). The deduction system uses the following axioms:

` a(a) (for all a ∈ Σ).

Each rule A→ X1,1 . . . X1,`1 & . . .&Xm,1 . . . Xm,`m in R, with m > 1, `i > 0 and Xi,j ∈ Σ ∪N ,
is regarded as the following schema for deduction rules:{

Xi,j(ui,j)
}

16i6m
16j6`i

` A(w) for all ui,j ∈ Σ∗ with u1,1 . . . u1,`1 = . . . = um,1 . . . um,`m = w.

Whenever an item X(w) can be deduced from the above axioms by the given deduction rules,
this is denoted by ` X(w). Define LG(X) = {w | ` X(w)} and L(G) = LG(S) = {w | ` S(w)}.

Example 3.1(D). Returning to the grammar from Example 3.1, consider the following derivation
of the fact that the string abc is generated by the grammar.

` a(a) (axiom)
` b(b) (axiom)
` c(c) (axiom)
` A(ε) (rule A→ ε)

a(a), A(ε) ` A(a) (rule A→ aA)
` B(ε) (rule B → ε)

b(b), B(ε), c(c) ` B(bc) (rule B → bBc)
` D(ε) (rule D → ε)

a(a), D(ε), b(b) ` D(ab) (rule D → aDb)
` C(ε) (rule C → ε)

c(c), C(ε) ` C(c) (rule C → cC)
A(a), B(bc), D(ab), C(c) ` S(abc) (rule S → AB&DC)

3.1.2 Definition by term rewriting

The rewriting in conjunctive grammars is carried out generally in the same way as in Chom-
sky’s definition of ordinary grammars. The only difference is in the objects being transformed:
while rewriting in ordinary grammars operates with strings over Σ ∪ N , which are terms over
concatenation, rewriting in conjunctive grammars use terms over concatenation and conjunction.

4 A. Okhotin, “Formal grammars” (chapter 3 draft, September 11, 2014)

Definition 3.1(R) (Szabari [6], Okhotin [2]). Given a grammar G, consider terms over con-
catenation and conjunction with symbols from Σ ∪ N and the empty string ε as atomic terms.
Assume that the symbols “(”, “&” and “)” used to construct the terms are not in Σ ∪ N . The
relation =⇒ of one-step rewriting on the set of terms is defined as follows.

• Using a rule A→ α1 & . . .&αm ∈ R, any atomic subterm A of any term can be rewritten
by the subterm (α1 & . . .&αm):

. . . A . . . =⇒ . . . (α1 & . . .&αm) . . .

• A conjunction of several identical strings in Σ∗ can be rewritten by one such string: for
every w ∈ Σ∗,

. . . (w& . . .&w) . . . =⇒ . . . w . . .

The relations of rewriting in zero or more steps, in one or more steps and in exactly ` steps are
denoted by =⇒∗, =⇒+ and =⇒`, respectively. The language generated by a term ϕ is is the set
of all strings over Σ obtained from it in a finite number of rewriting steps:

LG(ϕ) = {w | w ∈ Σ∗, ϕ
G

=⇒∗w}.

The language generated by the grammar is the language generated by the term S:

L(G) = LG(S) = {w | w ∈ Σ∗, S
G

=⇒∗w}.

For simplicity, when a single-conjunct rule A → α is applied, one can omit the parentheses,
and rewrite A with α, rather than with (α).

Example 3.1(R). Consider the grammar in Example 3.1. According to the definition by term
rewriting, the string abc can be obtained by the following rewriting sequence.

S =⇒ (AB&DC) =⇒ (aAB&DC) =⇒ (aB&DC) =⇒ (abBc&DC) =⇒ (abc&DC) =⇒
(abc& aDbC) =⇒ (abc& abC) =⇒ (abc& abcC) =⇒ (abc& abc) =⇒ abc.

In essence, here two rewriting sequences, as in ordinary grammars, are carried out independently
of each other, and both AB and DC have to be rewritten to the same string, in order to perform
the last step of the rewriting.

3.1.3 Definition by parse trees

Parse trees for conjunctive grammars are, strictly speaking, directed acyclic graphs rather
than trees.

Definition 3.1(T). Let G = (Σ, N,R, S) be a conjunctive grammar. Then a parse tree of a
string w ∈ Σ∗ from X ∈ Σ ∪N is any connected directed acyclic graph defined as follows. Each
node of the tree is labelled either with a symbol from Σ or with a rule from R. All nodes labelled
with symbols in Σ are linearly ordered, forming the string w; the set of Σ-labelled leaves in any
subtree must form a contiguous substring of w There is a unique source node labelled with X or
with a rule for X. A node labelled with a ∈ Σ must have no sons.

Each node x labelled with a rule A → X1,1 . . . X1,`1 & . . .&Xm,1 . . . Xm,`m must have sons
labelled with X1,1, . . . , X1,`1 , . . . , Xm,1, . . . , Xm,`m , and these sons are linearly ordered. Let u
be the substring of w formed by the leaves in the subtree of x. Then there should exist m partitions
of u as u = u1,1 . . . u1,`1 = . . . = um,1 . . . um,`m , so that the subtree of each Xi,j includes exactly
the leaves corresponding to the symbols in ui,j.

Consider the grammar from Example 3.1. Then, according to Definition 3.1(T), the tree in
Figure 3.1 witnesses that the string abc is in the language defined by this grammar.

Grammars with Boolean operations 5

a b c

S→AB & DC

A→aA

A→ε B→ε D→ε C→ε

B→bBc D→aDb C→cC

Figure 3.1: Parse tree of the string abc according to the conjunctive grammar for { anbncn |n > 0}
given in Example 3.1.

3.1.4 Definition by language equations

Another equivalent definition of the language generated by a conjunctive grammar is by a
solution of a system of language equations. The system corresponding to a grammar is defined
similarly to the case of ordinary grammars, with the conjunction represented by the intersection
operation. The resulting system is bound to have a least solution by the same basic lattice-
theoretic argument as in the ordinary case with disjunction only, based only on the fact that the
right-hand sides of the equations are monotone and continuous functions (a property shared by
the intersection operation).

Definition 3.1(E) (Okhotin [3]). For every conjunctive grammar G = (Σ, N,R, S), the asso-
ciated system of language equations is a system of equations in variables N , with each variable
representing an unknown language over Σ, which contains the following equation for every vari-
able A:

A =
⋃

A→α1 &...&αm∈R

m⋂
i=1

αi (for all A ∈ N) (3.2)

Each αi in the equation is again a concatenation of variables and constant languages {a} repre-
senting symbols of the alphabet, or constant {ε} if αi is the empty string. Let (. . . , LA, . . .)A∈N be
the least solution of this system. Then LG(A) is defined as LA for each A ∈ N , and L(G) = LS.

This least solution can be obtained as a limit of an ascending sequence of vectors of languages,
with the first element ⊥ = (∅, . . . ,∅), and with every next element obtained by applying the
right-hand sides of the system (3.2) as a vector function ϕ :

(
2Σ∗
)|N | → (

2Σ∗
)|N | to the previous

element. Since this function is monotone with respect to the partial ordering v of componentwise
inclusion, the resulting sequence {ϕk(⊥)}k→∞ is ascending, and the continuity of ϕ implies that
its limit (least upper bound)

⊔
k>0 ϕ

k(⊥) is the least solution.

6 A. Okhotin, “Formal grammars” (chapter 3 draft, September 11, 2014)

Example 3.1(E). According to the definition by language equations, the system corresponding
to the grammar in Example 3.1 is

S = AB ∩DC
A = {a}A ∪ {ε}
B = {b}B{c} ∪ {ε}
C = {c}C ∪ {ε}
D = {a}D{b} ∪ {ε},

and this system has a unique solution with S = { anbncn | n > 0}, A = a∗, B = { bmcm |m > 0},
C = c∗ and D = { ambm |m > 0}.

The membership of abc
∅
∅
∅
∅
∅

∅
{ε}
{ε}
{ε}
{ε}

{ε}
{ε, a}
{ε, bc}
{ε, c}
{ε, ab}

{ε, abc}
{ε, a, aa}
{ε, bc, bbcc}
{ε, c, cc}
{ε, ab, aabb}

 . . .

⊥ ϕ(⊥) ϕ2(⊥) ϕ3(⊥)

3.1.5 Equivalence of the four definitions

To see that Definitions 3.1(R), 3.1(D), 3.1(T), 3.1(E) are equivalent.

Theorem 3.1. Let G = (Σ, N,R, S) be a conjunctive grammar, as in Definition 3.1. For every
X ∈ Σ ∪N and w ∈ Σ∗, the following four statements are equivalent:

(R). X =⇒∗ w,

(D). ` X(w),

(T). there is a parse tree of w from X,

(E). w ∈
[⊔

k>0 ϕ
k(⊥)

]
X
.

3.2 Examples of conjunctive grammars

Consider the language {wcw | w ∈ {a, b}∗}, which is among the most common examples of
languages that have no ordinary grammar. This language represents such syntactic constructs
as identifier checking in programming languages. As proved by Wotschke [7], it is not expressible
as an intersection of finitely many ordinary languages. Constructing a conjunctive grammar for
this language thus requires more than putting a conjunction on top of an ordinary grammar.

Example 3.2 (Okhotin [2]). The following conjunctive grammar describe the language
{wcw | w ∈ {a, b}∗}.

S → C &D
C → XCX | c
D → aA& aD | bB& bD | cE
A → XAX | cEa
B → XBX | cEb
E → XE | ε
X → a | b

Grammars with Boolean operations 7

The nonterminal symbol C defines the language {xcy|x, y ∈ {a, b}∗; |x| = |y|} in the standard
way, and thus the conjunction with C in the rule for S ensures that the string consists of
two parts of equal length separated by a center marker. The other conjunct D checks that
the symbols in corresponding positions are the same. The actual language generated by D is
L(D) = {uczu |u, z ∈ {a, b}∗}, and it is defined inductively as follows: a string is in L(D) if and
only if

• either it is in c{a, b}∗ (the base case: no symbols to compare),

• or its first symbol is the same as the corresponding symbol on the other side, and the string
without its first symbol is in L(D) (that is, the rest of the symbols in the left part correctly
correspond to the symbols in the right part).

The comparison of a single symbol to the corresponding symbol on the right is done by the
nonterminals A and B, which generate the languages {xcvay | x, v, y ∈ {a, b}∗, |x| = |y|} and
{xcvby | x, v, y ∈ {a, b}∗, |x| = |y|}, respectively, and the above inductive definition is directly
expressed in the rules for D, which recursively refer to D in order to apply the same rule to the
rest of the string. Finally, the rule for S defines the set of strings of the form xcy with |x| = |y|
(ensured by C) and x = y (imposed by D), and

{xcy | x, y ∈ {a, b}∗, |x| = |y|} ∩ {uczu | u, z ∈ {a, b}∗} = {wcw | w ∈ {a, b}∗}.

It is important to note that the construction essentially uses the center marker, and therefore this
method cannot be applied to constructing a conjunctive grammar for the language {ww | w ∈
{a, b}∗}. The question of whether {ww | w ∈ {a, b}∗} can be generated by any conjunctive
grammar remains an open problem.

The grammar in the next example defines the requirement of declaration before use.

Example 3.3. The language

{ s1a
i1 . . . sna

in | n, i1, . . . , in > 0; ∀j ∈ {1, . . . , n}, if si = c, then ∃k < i : jk = ji}.

is generated by the following grammar.

S → SdA | ScA&EdB | ε
A → aA | ε
B → aBa | Ec
E → cAE | dAE | ε

A substring of the form dak represents a declaration of k, and every substring of the form cak is
a reference to k, which requires an earlier declaration dak.

The grammar applies generally the same technique of inductive definitions as in Example 3.2.
The rule S → ε asserts that an empty sequence of declarations and references has the required
property. The rule S → SdA appends a new declaration (dA) to a well-formed string with all
references preceded by declarations (S). The other rule S → ScA&EdB similarly appends a
reference (cA), and at the same time ensures that this new reference has a preceding declaration
(EdB). Here E defines an arbitrary sequence of declarations and references, and the concatena-
tion EdB defines a suitable partition of the string, where the symbol d begins the appropriate
declaration, and B ensures that the number of symbols a is the same in the declaration and in
the reference.

The next example shows that conjunctive grammars over a one-symbol alphabet have a
non-trivial expressive power, unlike the ordinary grammars, which are limited to regular unary
languages. Though this does not exactly pertain to defining syntax, the demonstrated technique
for constructing conjunctive grammars for unary languages has numerous theoretical implications
to be explained later.

8 A. Okhotin, “Formal grammars” (chapter 3 draft, September 11, 2014)

Example 3.4 (Jeż [1]). The following conjunctive grammar with the start symbol A1 generates
the language { a4n | n > 0}:

A1 → A1A3 &A2A2 | a
A2 → A1A1 &A2A6 | aa
A3 → A1A2 &A6A6 | aaa
A6 → A1A2 &A3A3

Each symbol Ai generates the language { ai·4n | n > 0}.

This grammar is best explained in terms of base-4 notation of the length of the strings. Then
each nonterminal Ai with i ∈ {1, 2, 3} represents base-4 numbers i0 . . . 0, or 120 . . . 0 for A6.
Substituting these four languages into the equation

A1 = (A1A3 ∩A2A2) ∪ {a},

the first concatenation A1A3 produces all numbers with the notation 10∗30∗, 30∗10∗ and 10+,
of which the latter is the intended set, while the rest are regarded as garbage. The second
concatenation A2A2 yields 20∗20∗ and 10+. Though both concatenations contain some garbage,
the garbage in the concatenations is disjoint, and is accordingly filtered out by the intersection,
which produces exactly the numbers with the notation 10+, that is, the language { a4n | n > 1}.
Finally, the union with {a} yields the language { a4n | n > 0}, and thus the first equation turns
into an equality. The rest of the equations are verified similarly. Since the membership of
each string in the languages L(Ai) depends on the membership of strictly shorter strings, the
grammar defines the correct languages by a proper induction. Proving that formally is a matter
of technique [1].

Exercises

3.2.1. Construct a conjunctive grammar for the language { ambncmdn |m,n > 0}.

3.2.2. Construct a conjunctive grammar for the language {w |w ∈ {a, b, c}∗, |w|a = |w|b = |w|c}.

3.2.3. Construct a conjunctive grammar for the language

{ dai1 . . . dain | n, i1, . . . , in > 0, and the numbers i1, . . . , in are pairwise distinct},

which adopts the encoding from Example 3.3 and represents the condition of having no
duplicate declarations.

3.2.4. Construct a conjunctive grammar for the language

L = { b ab a3b a7b a15b . . . a2n−1b | n > 0} = {b, bab, babaaab, babaaabaaaaaaab, . . .}.

3.2.5. Construct a conjunctive grammar for the language

L = { (anb)n | n > 1} = {ab, aabaab, aaabaaabaaab, . . .}.

3.2.6. Construct a conjunctive grammar for the language { (wc)|w| | w ∈ {a, b}∗}.

3.2.7. Construct a conjunctive grammar for the language {wcww | w ∈ {a, b}∗}.

3.2.8. Construct a conjunctive grammar for the language { a5n | n > 0}.

Grammars with Boolean operations 9

Research problems

3.2.9. Does there exist a conjunctive grammar for the language {ww | w ∈ {a, b}∗}?

3.2.10. Does there exist a conjunctive grammar for the language { anbin | n, i > 0}?

3.2.11. Does there exist a conjunctive grammar for the language { an2 | n > 0}?

3.3 Normal forms for conjunctive grammars

Three normal forms. First, an extension of the Chomsky normal form, also called the binary
normal form, in which all rules are of the form A→ B1C1 & . . .&BmCm (the Chomsky normal
form for ordinary grammars has m = 1) or A → a. Secondly, a new normal form called the
odd normal form, with rules A → B1a1C1 & . . .&BmamCm or A → a, in which all generated
strings are of an odd length. Thirdly, a form with restricted disjunction, where every symbol A
is defined as A→ α1 & . . .&αm | w1 . . . | wn, that is, there is only one rule of the general form,
and the rest simply assert that the listed strings have the property A.

The transformation to the Chomsky normal form proceeds by first eliminating null conjuncts,
that is, rules of the form A → ε& . . . that can potentially generate the empty string. At
the second step, unit conjuncts, that is, rules of the form A → B& . . . that potentially cause
circularities in the definition,

3.3.1 Eliminating null conjuncts

Similar to the case of ordinary grammars.

Lemma 3.1. There exists an algorithm that, given a conjunctive grammar G = (Σ, N,R, S),
constructs the set Nullable(G) = {A |A ∈ N, ε ∈ LG(A)}.

Proof. Nested sets:

Nullable0(G) = ∅,
Nullablek+1(G) = {A ∈ N | there is a rule A→ X1,1 . . . X1,`1 & . . .&Xm,1 . . . Xm,`m

with Xi,j ∈ Nullablek(G)}.

Correctness: as in the ordinary case, A ∈ Nullablek if and only if ε ∈ [ϕk(⊥)]A.

Lemma 3.2. Let G = (Σ, N,R, S) be a grammar and let Nullable(G) be as in Lemma 3.1.
Construct another grammar G′ = (Σ, N,R′, S), where R′ contains all rules of the form

A→ X1,1 . . . X1,`1 & . . .&Xm,1 . . . Xm,`m ,

for which there is a rule A→ θ1,0X1,1θ1,1 . . . θ1,`1−1X1,`1θ1,`1 & . . .& θm,0Xm,1θm,1 . . . θm,`m−1Xm,`mθm,`m
in R, with m > 1, `i > 1 and θi,j ∈ Nullable(G)∗. Then, for every A ∈ N ,
LG′(A) = LG(A) \ {ε}.

3.3.2 Eliminating unit conjuncts

Lemma 3.3 (Substitution of unit conjuncts). Let G = (Σ, N,R, S) be a conjunctive grammar.
Let A,B ∈ N and let

A→ B&α1 & . . .&αm (m > 0, αi ∈ (Σ ∪N)∗) (3.3)

10 A. Okhotin, “Formal grammars” (chapter 3 draft, September 11, 2014)

be some rule for A that contains a unit conjunct B. Let B → β1,1 & . . .&β1,`1, . . . , B →
βk,1 & . . .&βk,`k be all rules for B that do not contain the unit conjunct B (βi,j 6= B).

Construct the grammar G′ = (Σ, N.R′, S) by removing the rule (3.3) and, if A 6= B, adding
the collection of rules

A→ βi,1 & . . .&βi,`i &α1 & . . .&αm (1 6 i 6 k).

Then LG(A) = LG′(A) for all A ∈ N .

Let G = (Σ, N,R, S) be a grammar without null conjuncts, and consider a directed graph
of immediate reachability by unit conjuncts, with the set of nodes N and with the arcs
{ (A,B) | there is a rule A→ B& . . . in G}).

Lemma 3.4. Let Γ = ({A1 . . . An}, E) be a directed graph without multiple arcs. Then, using
the transformation rules

i. Any arc (A,B), with A 6= B, can be substituted with a possibly empty set of arcs
{ (A,C) | (B,C) ∈ E, C 6= B},

ii. Any loop (A,A) can be removed,

it is possible to remove all arcs from the graph in finitely many steps.

Proof. First, all the arcs (Ai, Aj), with i > j, are removed in the following order

(A1, A1),

(A2, A1),(A2, A2)

(A3, A1),(A3, A2), (A3, A3),

...
(An, A1), . . . , (An, An−1), (An, An).

(3.4)

The removal of neither of them leads to restoration of any previously removed arc. The proof is
by an induction on the position of the arc in the list (3.4). (***TBW***)

Once all the arcs (3.4) are removed, the resulting graph is acyclic, and it is possible to
eliminate arcs leading to sink nodes one by one, until none remain in the graph.

Theorem 3.2. For each conjunctive grammar G = (Σ, N,R, S) without null conjuncts there
exists a conjunctive grammar G′ = (Σ, N,R′, S) without null and unit conjuncts, which defines
the same language.

Proof. Note that grammar transformations carried out by Lemma 3.3 are equivalent to graph
transformations done by Lemma 3.4. Since the latter provides a way to remove all arcs from the
graph of immediate reachability by unit conjuncts in finitely many steps, there is a corresponding
sequence of grammar transformations by Lemma 3.3, which leads to the removal of all unit
conjuncts from the grammar.

The transformation may lead to an exponential blow-up: if the given grammar contains the
rules

A → B1 & . . .&Bk

B1 → β1 | β′1
...

Bk → βk | β′k,

where |βi|, |β′i| > 2, then the resulting grammar will have 2k rules for A.

Grammars with Boolean operations 11

3.3.3 The Chomsky normal form

Definition 3.2. A conjunctive grammar G = (Σ, N,R, S) is said to be in the Chomsky normal
form, if every rule of the form

A→ B1C1 & . . .&BmCm (m > 1, Bi, Ci ∈ N),

A→ a (a ∈ Σ),

S → ε,

where the last rule is allowed only if S does not appear in the right-hand sides of any rules.

Theorem 3.3 (Okhotin [2]). For every conjunctive grammar there exists and can be effectively
constructed a conjunctive grammar in the Chomsky normal form generating the same language.

Sketch of a proof. As in the case of ordinary grammars: first cut long rules, then eliminate null
conjuncts, then eliminate unit conjuncts, and finally move every occurrence of a symbol from Σ
in conjuncts of length 2 to a separate rule.

Elimination of null conjuncts can be achieved with only a linear blowup in the size of the
grammar, but the known procedure for eliminating unit conjuncts leads, in the worst case, to an
exponential blowup.

3.3.4 The odd normal form

Definition 3.3. A conjunctive grammar G = (Σ, N,R, S) is said to be in the odd normal
form, if all rules in R are of the form

A→ B1a1C1 & . . .&BmamCm (n > 1, Bi, Ci ∈ N, ai ∈ Σ)

A→ a (a ∈ Σ)

If S is never used in the right-hand sides of any rules, then the following two types of rules, called
the even rules, are also allowed:

S → aA (a ∈ Σ, A ∈ N)

S → ε

For each a ∈ Σ, there is at most one rule S → aA.

Theorem 3.4 (Okhotin, Reitwießner [5]). For every conjunctive grammar there exists and can
be effectively constructed a conjunctive grammar in the odd normal form generating the same
language.

The proof is based on the following construction, which produces a grammar generating the
odd subset of the given language, and that grammar is almost in the odd normal form, with
occasional unit conjuncts.

Lemma 3.5. Let G = (Σ, N,R, S) be a conjunctive grammar in the Chomsky normal form.
Define the grammar G′ = (Σ, N ′, R′, S′), in which the set of nonterminals is N ′ = { xAy | A ∈
N, x, y ∈ Σ ∪ {ε}} with the initial symbol S′ = εSε, and the set R′ contains the following rules:
first, for every rule A → B(1)C(1)& . . .&B(m)C(m) in R, and for all x, y ∈ Σ ∪ {ε}, the new
grammar contains all rules

xAy → α(1)
& . . .&α(m),

12 A. Okhotin, “Formal grammars” (chapter 3 draft, September 11, 2014)

where each α(i) is in

{xB(i)
a ·a·εC(i)

y | a ∈ Σ}∪{xB(i)
ε ·a·aC(i)

y | a ∈ Σ}∪{xB(i)
ε | y ∈ LG(C(i))}∪{εC(i)

y | x ∈ LG(B(i))}.

Secondly, for all A ∈ N , x, y ∈ Σ61 and a ∈ Σ satisfying xay ∈ LG(A), the new grammar
contains the rule

xAy → a

Then, each xAy generates the language

LG′(xAy) = x−1LG(A)y−1 ∩Odd,

and, in particular, L(G′) = LG′(εSε) = L(G) ∩Odd.

The grammar constructed in Lemma 3.5 generates the odd subset of the given language.
However, it actually encodes the entire information defined in the original grammar, and using
the “even rules” allowed in the odd normal form one can generate the original language as it is.

Proof of Theorem 3.4. Let L ⊆ Σ∗ be conjunctive. Since every conjunctive language can be
generated by a conjunctive grammar in Chomsky normal form (which can be obtained effectively),
there is, by Lemma 3.5, a conjunctive grammar G = (Σ, N,R, S) in odd normal form without
even rules, such that for all a ∈ Σ,

LG(S) = L ∩Odd and LG(aSε) = a−1L ∩Odd.

Construct the grammar G′ = (Σ, N ∪ {S′}, R ∪ R′, S′), where S′ is the new initial symbol with
the following new rules:

S′ → ϕ (for all S → ϕ ∈ R),

S′ → a aSε (for all a ∈ Σ),

S′ → ε if ε ∈ L.

This grammar is in the odd normal form (with even rules) and it generates the language L:

LG′(S
′) = LG(S) ∪

⋃
a∈Σ

aLG(aSε) ∪ (L ∩ {ε})

= (L ∩Odd) ∪
⋃
a∈Σ

a(a−1L ∩Odd) ∪ (L ∩ {ε})

= (L ∩Odd) ∪
⋃
a∈Σ

(a(a−1L) ∩ aOdd) ∪ (L ∩ {ε})

= (L ∩Odd) ∪ (L ∩ Even) ∪ (L ∩ {ε})
= L.

Theorem 3.5 (Okhotin, Reitwießner [5]). For every conjunctive grammar G = (Σ, N,R, S) and
for every symbol a ∈ Σ, there exists and can be effectively constructed conjunctive grammars
generating the languages a−1 · L(G) = {w | aw ∈ L(G)} and L(G) · a−1 = {w | wa ∈ L(G)}.

Grammars with Boolean operations 13

3.3.5 An analogue of Greibach normal form?

For ordinary grammars, there is another important normal form: the Greibach normal form,
in which every rule is either A → aα with a ∈ Σ and α ∈ (Σ ∪N)∗, or A → ε. This definition
naturally carries on to conjunctive grammars. It can be said that a conjunctive grammar G =
(Σ, N,R, S) is in Greibach normal form if every rule in R is of the form

A→ aα1 & . . .& aαn (n > 1, a ∈ Σ, αi ∈ N∗) or
A→ ε.

A transformation to this form is known only for the special case of a one-symbol alphabet. It
can be inferred from Theorem 3.4 by first transforming a grammar to the odd normal form, and
then using the commutativity of concatenation of unary languages.

Theorem 3.6 (Okhotin, Reitwießner [5]; independently obtained by Nomikos and Rondogian-
nis). For every conjunctive grammar over an alphabet Σ = {a}, there exists and can be effectively
constructed a conjunctive grammar in the Greibach normal form generating the same language.

A simple direct proof. Let G = ({a}, N,R, S) be the original grammar and assume that it is
in the Chomsky normal form. Construct a new grammar G′ = ({a}, N ∪ {S′}, R′, S) with the
following rules:

S′ → aS

A→ aB1C1 & . . .& aBmCm (A→ B1C1 & . . .&BmCm ∈ R)

A→ ε (A→ a ∈ R)

Then LG′(A) = { an−1 | an ∈ LG(A)} for all A ∈ N , and hence L(G′) = L(G).

Example 3.5. Consider the grammar for the language { a4n | n > 0} given in Example 3.4. It
can be rewritten as follows.

S → aA1

A1 → aA1A3 & aA2A2 | ε
A2 → aA1A1 & aA2A6 | a
A3 → aA1A2 & aA6A6 | aa
A6 → aA1A2 & aA3A3

Each symbol Ai generates the language { ai·4n−1 | n > 0}.

It remains unknown, whether every conjunctive grammar over an unrestricted alphabet can
be transformed to that form.

Research problems

3.3.1. Is it possible to remove unit conjuncts from a conjunctive grammar with a less than expo-
nential blow-up?

3.3.2. Is there a Greibach normal form for conjunctive grammars?

3.3.3. Is it possible to transform every conjunctive grammar to a grammar with restricted dis-
junction and without null conjuncts? See the unsuccessful attempt by Okhotin and Re-
itwießner [5].

14 A. Okhotin, “Formal grammars” (chapter 3 draft, September 11, 2014)

3.4 Boolean grammars

3.4.1 Intuitive definition

Boolean grammars are ordinary grammars equipped with all propositional connectives, or,
in other words, conjunctive grammars augmented with negation. One can say that conjunctive
grammars are the monotone fragment of Boolean grammars, and ordinary grammars are their
disjunctive fragment.

Definition 3.4 (Okhotin [4]). A Boolean grammar is a quadruple G = (Σ, N,R, S), in which

• Σ is the alphabet;

• N is the set of nonterminal symbols;

• P is a finite set of rules of the form

A→ α1 & . . .&αm &¬β1 & . . .&¬βn (3.5)

with A ∈ N , m,n > 0, m+ n > 1 and αi, βj ∈ (Σ ∪N)∗;

• S ∈ N is the initial symbol.

The only difference from a conjunctive grammar is that some conjuncts can be negated:
the conjuncts αi and ¬βj are called positive and negative respectively, with the notation ±αi
and ±βj occasionally used to refer to conjuncts, without specifying whether they are positive
or negative. A rule (3.5) can be read as follows: “if a string is representable in the form α1,
. . . , αm, but is not representable in the form β1, . . . , βn, then this string has the property A”.
This intuitive interpretation is not yet a formal definition, but this understanding is sufficient to
construct grammars.

Example 3.6 (cf. Example 3.1). The following Boolean grammar defines the language
{ ambncn |m,n > 0,m 6= n}:

S → AB&¬DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

The rules for the nonterminals A, B, C and D are ordinary, so, according to the intuitive
semantics, they should generate the same languages as in Example 3.1. Then the propositional
connectives in the rule for S specify the following combination of the conditions given by AB
and DC:

{ aibjck | j = k}︸ ︷︷ ︸
L(AB)

∩{ aibjck | i = j}︸ ︷︷ ︸
L(DC)

= { aibjck | j = k and i 6= j} = { ambncn |m 6= n}︸ ︷︷ ︸
L(S)

.

Example 3.7. The following Boolean grammar generates the language {ww | w ∈ {a, b}∗}:

S → ¬AB&¬BA&C
A → XAX | a
B → XBX | b
C → XXC | ε
X → a | b

Grammars with Boolean operations 15

Again, according to the intuitive semantics, the nonterminals A, B, C and X should generate
the appropriate ordinary languages, and

L(A) = {uav | u, v ∈ {a, b}∗, |u| = |v|},
L(B) = {ubv | u, v ∈ {a, b}∗, |u| = |v|}.

This implies
L(AB) = {uavxby | u, v, x, y ∈ {a, b}∗, |u| = |x|, |v| = |y|},

that is, L(AB) contains all strings of even length with a mismatched a on the left and b on the
right (in any position). Similarly,

L(BA) = {ubvxay | u, v, x, y ∈ {a, b}∗, |u| = |x|, |v| = |y|}

represents the mismatch formed by b on the left and a on the right. Then the rule for S defines
the set of strings of even length without such mismatches:

L(S) = L(AB) ∩ L(BA) ∩ {aa, ab, ba, bb}∗ = {ww | w ∈ {a, b}∗}.

Example 3.8. The Boolean grammar

S → ¬aA&C
A → ¬Sb&C
C → aC | Cb | ε

generates the language { ambn |m 6 n}.

The symbol C clearly defines a∗b∗. For each j > 0, the string bj is always in aA, regardless
of the value of a, and therefore b∗ ⊆ LG(S). For each i > 1, the string ai is in LG(S) if and only
if ai−1 is not in LG(A), which is false; therefore, a+ ∩ LG(S) = ∅. Consider a string aibj , with
i, j > 1; according to the rules of the grammar,

aibj ∈ LG(S)⇔ ai−1bj /∈ LG(A)⇔ ai−1bj−1 ∈ LG(S),

and thus the membership of such a string in LG(S) is ultimately determined by whether it is
reduced to a string from b∗ or from a+.

Though such a common-sense interpretation of Boolean grammars is clear for “reasonable”
grammars, the use of negation can, in general, lead to logical contradictions (consider the gram-
mar S → ¬S), and for that reason giving a mathematically sound formal definition of Boolean
grammars is far from being trivial. To be more precise, the dependence of statements of the
form “string w has property A” becomes non-monotone, where the discovery of the fact that
one statement is true may imply that another statement is false. Thus, a correct assignment of
truth-values to statements is a solution of a certain infinite system of equations with Boolean
unknowns. More natural and convenient formalizations are given by representing a grammar as
a system of language equations, so that a particular distinguished solution of this system defines
the language generated by a grammar.

There are two known definitions of Boolean grammars by equations. One of them uses
equations with standard formal languages as unknowns, and avoids the resulting difficulties by
imposing a restriction upon solutions of those equations. The other definition expands the model
towards languages over three-valued logic and assigns a meaning to any grammar.

16 A. Okhotin, “Formal grammars” (chapter 3 draft, September 11, 2014)

3.4.2 Definition by language equations

According to the simplest definition, a grammar is represented by a system of language
equations defined analogously to the conjunctive case, with the negation represented by comple-
mentation.

This system is required to have a unique solution, and grammars with no solutions or multiple
solutions are considered ill-formed. However, this does not yet guarantee that the membership
of a string in the language depends only on the membership of shorter strings, which is essential
for grammars to represent inductive definitions. Consider the following grammar, along with the
associated system of language equations:

S → ¬S& aA
A → A

{
S = S ∩ {a}A
A = A

The system has a unique solution S = A = ∅: indeed, supposing that there is a string w ∈ A,
a contradiction of the form “aw ∈ S if and only if aw /∈ S” is obtained. Thus, in order to
determine that w /∈ A, one has to consider the string aw, which contradicts the principle of
inductive definition. Furthermore, there is a theoretical result, that every recursive language is
represented by a unique solution of a system of language equations associated to some Boolean
grammar [?].

However, once an extra restriction is imposed upon these equations, a feasible definition of
Boolean grammars can be obtained:

Definition 3.5 (Okhotin [4]). Let G = (Σ, N,R, S) be a Boolean grammar, and define the
associated system of language equations

A =
⋃

A→α1 &...&αm &
&¬β1 &...&¬βn∈R

[m⋂
i=1

αi ∩
n⋂
j=1

βj

]
(3.6)

Assume that for every integer ` > 0 there exists a unique vector of languages (. . . , LA, . . .)A∈N
with LA ⊆ Σ6`, such that a substitution of LA for A, for each A ∈ N , turns every equation (3.6)
into an equality modulo intersection with Σ6`. Then the system is said to have a strongly unique
solution, and, for every A ∈ N , the language LG(A) is defined as LA from the unique solution
of this system. The language generated by the grammar is L(G) = LG(S).

Returning to the above grammar with the rules S → ¬S& aA and A → A, consider any
number ` > 0. Then the associated system (3.6) has two solutions modulo Σ6`, namely, (S =
∅, A = ∅) and (S = ∅, A = {a`}). Therefore, the grammar is deemed invalid according to
Definition 3.5.

Consider the Boolean grammar in Example 3.7. The corresponding system of language
equations is

S = AB ∩BA ∩ C
A = XAX ∪ {a}
B = XBX ∪ {b}
C = XXC ∪ {ε}
X = {a} ∪ {b}

and the following assignment of languages to variables is its unique solution:

S = {ww | w ∈ {a, b}∗},
A = {uav | u, v ∈ {a, b}∗, |u| = |v|},
B = {ubv | u, v ∈ {a, b}∗, |u| = |v|},
C = {aa, ab, ba, bb}∗,
X = {a, b}.

Grammars with Boolean operations 17

Furthermore, its solution modulo every Σ6` with ` > 0 is unique, and hence L(G) is well-defined
as {ww | w ∈ {a, b}∗}.

3.4.3 Parse trees

Whenever a Boolean grammar generates a string, it defines one or more parse trees. These
are, strictly speaking, finite acyclic graphs rather than trees, and they represent parses of a
string according to positive conjuncts in the rules. A parse tree of a string w = a1 . . . a|w| from
a nonterminal A has |w| ordered leaves labelled by a1, . . . , a|w|, and the rest of the vertices are
labelled by rules from P . Each internal vertex of the tree corresponds to a substring ai+1 . . . aj ,
and if it is labelled by a rule

A→ α1 & . . .&αm &¬β1 & . . .&¬βn,

then it has exactly |α1|+ . . .+ |αm| sons corresponding to the symbols in the positive conjuncts,
and for each nonterminal in each αt, the corresponding son is labelled with some rule for that
nonterminal, while for each terminal a ∈ Σ in each αt, the son is a leaf labelled with a. Further-
more, the descendants of the sons from each conjunct αt encompass the same terminal string as
their father, and in this way the tree represents multiple parses of the same substring.

Negative conjuncts are not represented in the tree, and thus a parse tree does not constitute
a complete proof that the string is in L(A). However, for some grammars, in which the negation
is used judiciously, these trees illustrate some syntactic structures.

For each substring of w and for each A ∈ N , it is sufficient to have at most one subtree
representing a parse of w from A, and hence the entire tree needs to have at most |N | · 12 |w|(|w|+
1) + |w| nodes.

Bibliography

[1] A. Jeż, “Conjunctive grammars can generate non-regular unary languages”, International
Journal of Foundations of Computer Science, 19:3 (2008), 597–615.

[2009] V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “Well-founded semantics for Boolean
grammars”, Information and Computation, 207:9 (2009), 945–967.

[2] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Combinatorics,
6:4 (2001), 519–535.

[3] A. Okhotin, “Conjunctive grammars and systems of language equations”, Programming and
Computer Software, 28:5 (2002), 243–249.

[4] A. Okhotin, “Boolean grammars”, Information and Computation, 194:1 (2004), 19–48.

[5] A. Okhotin, C. Reitwießner, “Conjunctive grammars with restricted disjunction”, Theoretical
Computer Science, 411:26–28 (2010), 2559–2571.

[6] A. Szabari, Alternujúce zásobníkové automaty (Alternating Pushdown Automata), in Slovak,
diploma work (M.Sc. thesis), University of Košice, Czechoslovakia, 1991, 45 pp.

[7] D. Wotschke, “The Boolean closures of deterministic and nondeterministic context-free lan-
guages”, In: W. Brauer (Ed.), Gesellschaft für Informatik e. V., 3. Jahrestagung 1973, LNCS
1, 113–121.

18

http://dx.doi.org/10.1142/S012905410800584X
http://dx.doi.org/10.1016/j.ic.2009.05.002
http://dx.doi.org/10.1016/j.ic.2009.05.002
http://dx.doi.org/10.1023/A:1020213411126
http://dx.doi.org/10.1016/j.ic.2004.03.006
http://dx.doi.org/10.1016/j.tcs.2010.03.015

Index

Chomsky, Avram Noam (b. 1928), 3

Geffert, Viliam (b. 1955), 2

Jeż, Artur (b. 1982), 8

Nomikos, Christos, 13

Okhotin, Alexander (b. 1978), 2, 4–6, 11–14

Reitwießner, Christian, 11–13
Rondogiannis, Panagiotis, 13

Szabari, Alexander, 2, 4

Wotschke, Detlef, 6

19

	Grammars with Boolean operations
	Conjunctive grammars
	Definition by deduction
	Definition by term rewriting
	Definition by parse trees
	Definition by language equations
	Equivalence of the four definitions

	Examples of conjunctive grammars
	Normal forms for conjunctive grammars
	Eliminating null conjuncts
	Eliminating unit conjuncts
	The Chomsky normal form
	The odd normal form
	An analogue of Greibach normal form?

	Boolean grammars
	Intuitive definition
	Definition by language equations
	Parse trees

	Bibliography
	Name index

