- ML 23. Рассмотрим задачу Max-3-SAT, в которой ко формуле в 3-КНФ необходимо найти максимальное число клозов, которые можно одновременно удовлетворить. Придумайте полиномиальный вероятностный алгоритм, который по 3-КНФ формуле "в среднем" (мат. ожидание) выдает $\frac{7}{8}$ приближение задачи Max-3-SAT.
- ML 24. Придумайте "в среднем" (мат. ожидание) полиномиальный вероятностный алгоритм, который по 3-КН Φ формуле выдает $\frac{7}{9}$ приближение задачи Max-3-SAT.
- \mathbf{ML} **25.** Докажите, что если $\mathbf{NP} \subseteq \mathbf{BPP}$, то $\mathbf{NP} = \mathbf{RP}$.
- **ML 26.** Пусть \mathbf{ZPP} это класс языков, которые принимаются вероятностной машиной Тьюринга без ошибки, математическое ожидание времени работы которых полиномиально. Докажите, что:
 - а) $L \in \mathbf{ZPP}$ тогда и только тогда, когда существует полиномиальная по времени вероятностная машина Тьюринга M, которая выдает $\{0,1,?\}$, что для всех $x \in \{0,1\}^*$ с вероятностью 1, $M(x) \in \{L(x), ?\}$ и $\Pr[M(x) = ?] \le \frac{1}{2}$;
 - б) $\mathbf{ZPP} = \mathbf{RP} \cap \mathbf{coRP}$.
- ${
 m ML}$ 27. $|{
 m BPL}-{
 m 9}$ то класс языков, для которых существует вероятностная машина Тьюринга M, которая использует логарифмическую память, останавливается при всех последовательностях случайных битов и для всех x выполняется, что $\Pr[M(x) = L(x)] \ge \frac{2}{3}$. Покажите, что $BPL \subseteq P$.
- $\overline{\mathbf{ML}\ \mathbf{28.}}$ Пусть $\mathbf{NP}\subseteq\mathbf{DTime}[n^{\log(n)}]$, докажите, что $\mathbf{PH}\subseteq\bigcup_{\cdot}\mathbf{DTime}[n^{\log^k(n)}]$ (подсказка: вспомните задачу $P = NP \Rightarrow EXP = NEXP$).
- ML 9. Докажите, что существует язык, для которого любой алгоритм, работающий время $O(n^2)$ решает его правильно на менее, чем на половине входов какой-то длины, но этот язык распознается алгоритмом, работающим время $O(n^3)$.
- **ML 10.** Докажите, что:
 - a) $\mathbf{DSpace}[n^2] \subseteq \mathbf{DSpace}[n^3];$
 - б) $NSpace[n^2] \subseteq NSpace[n^3].$
- **ML 13.** Покажите, что:
 - $\overline{\mathbf{a}) \mathbf{P}^{\mathbf{P}}} = \mathbf{P}$:
 - б) язык GNI (пар неизоморфных графов) лежит в ${f P}^{{f NP}}$.
- **ML 14.** Покажите, что:
 - a) $P \subseteq NP \cap coNP$;
 - б) **N**Р ⊂ **E**XР.
- **ML 18.** Приведите пример разрешимого языка из P/poly, который не лежит в P.
- ML 19. Докажите, что NTime $[n] \neq$ PSPACE.
- $f{ML 20.}$ Пусть $L \in \bf{NP^{NP}}$, докажите, что: а) $L \in \bf{NP^{NP}}^{[1]}$ (подсказка: рассмотрите оракул SAT и «угадайте» ответы оракула);
 - 6) $NP^{NP} \subseteq \Sigma_2$.
- ML 21. Докажите, что язык булевых формул с ровно одним выполняющим набором (USAT):

- a) со ${\bf NP}$ -трудным; б) лежит в ${\bf P^{NP}}$.

ML 22. Докажите, что язык $L = \{(\varphi, 1^k) \mid функция, заданная формулой <math>\varphi$, не может быть посчитана формулой размера $k\}$ лежит в **PH**.

 $\fbox{\mathbf{ML 52.}}$ Будет ли теория $\mathtt{Th}((\mathbb{N},<,=))$ конечно аксиоматизируемой.