Naive Bayes

March 20, 2013

Spam Classification

- Training set - set of emails labeled spam/non-spam
- Each feature vector
- has length N of number of words in a dictionary (e.g. $N=50000$)
- if an email contains i-th word in a dictionary then
- set $x_{i}=1$
- otherwise set $x_{i}=0$

Bayes Law and Naive Assumption

$$
P(y \mid x)=\frac{P(x, y)}{P(x)}=\frac{P(x \mid y) P(y)}{P(x)}
$$

- y - class label
- $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ - feature vector
- to estimate $p(x \mid y)$ we assume that x_{i} 's are independent given y

$$
\begin{gathered}
p\left(x_{1}, \ldots, x_{50000} \mid y\right)=p\left(x_{1} \mid y\right) p\left(x_{2} \mid y, x_{1}\right) \ldots p\left(x_{50000} \mid y, x_{1}, \ldots, x_{49999}\right) \\
\quad=p\left(x_{1} \mid y\right) p\left(x_{2} \mid y\right) p\left(x_{3} \mid y\right) \ldots p\left(x_{50000} \mid y\right)=\prod_{i=1}^{n} p\left(x_{i} \mid y\right)
\end{gathered}
$$

Classificator

$$
P\left(y \mid x_{1}, \ldots, x_{50000}\right)=\frac{p\left(x_{1} \mid y\right) \ldots p\left(x_{50000} \mid y\right)}{p\left(x_{1}, \ldots, x_{50000}\right)} p(y)
$$

- Estimation of multidimensional distribution $p\left(x_{1}, \ldots, x_{50000}\right)$ might be problematic
- Class label assigned for

$$
\operatorname{argmax}_{y} p(y \mid x)=\operatorname{argmax}_{y}\left(\frac{p(x \mid y) p(y)}{p(x)}\right)=\operatorname{argmax}_{y} p(x \mid y) p(y)
$$

Laplace Smoothing

- Let imagine that classificator met some new word in email, that doesn't contained in the dictionary. Let it's index be $i=50001$ then

$$
\begin{aligned}
& P_{\left(x_{50001} \mid y=0\right)}=\frac{\text { number of items with } x_{50001}=1 \text { and } y=0}{\text { number of items with } y=0}=0, \\
& P_{\left(x_{50001} \mid y=1\right)}=\frac{\text { number of items with } x_{50001}=1 \text { and } y=1}{\text { number of items with } y=1}=0 .
\end{aligned}
$$

and resulting score

$$
\begin{aligned}
& p\left(x_{1} \mid y=0\right) \ldots p\left(x_{50001} \mid y=0\right) p(y=0)=0 \\
& p\left(x_{1} \mid y=1\right) \ldots p\left(x_{50001} \mid y=1\right) p(y=1)=0
\end{aligned}
$$

- That seems to be not good since, some other words might be used for correct classification.
- In this case let's artificially add 1 to nominator and 2 for denominator

$$
\begin{aligned}
& P_{\left(x_{50001} \mid y=0\right)}=\frac{\text { number of items with } x_{50001}=1 \text { and } y=0+1}{\text { number of items with } y=0+2} \\
& P_{\left(x_{50001} \mid y=1\right)}=\frac{\text { number of items with } x_{50001}=1 \text { and } y=1+1}{\text { number of items with } y=1+2} .
\end{aligned}
$$

Neural Networks

March 20, 2013

You see this:

Testing:

What is this?

Learning Algorithm

50×50 pixel images $\rightarrow 2500$ pixels $n=2500 \quad$ (7500 if RGB)

+ Cars
- "Non"-Cars
Quadratic features $\left(x_{i} \times x_{j}\right): \approx 3$ million features

$$
h_{\theta}(x)=\frac{1}{1+\exp \{-\theta x\}}
$$

- $a_{i}^{(I)}$ - "activation" of unit i
 in layer I
- Θ^{\prime} - matrix of weights controlling function mapping from layer / to layer $I+1$
- Each $\Theta_{i, j}^{(I)}$ is edje from $a_{j}^{(I)}$ to $a_{i}^{(I+1)}$
$a_{1}^{(2)}=g\left(\Theta_{10}^{(1)} x_{0}+\Theta_{11}^{(1)} x_{1}+\Theta_{12}^{(1)} x_{2}+\Theta_{13}^{(1)} x_{3}\right)$
$a_{2}^{(2)}=g\left(\Theta_{20}^{(1)} x_{0}+\Theta_{21}^{(1)} x_{1}+\Theta_{22}^{(1)} x_{2}+\Theta_{23}^{(1)} x_{3}\right)$
$a_{3}^{(2)}=g\left(\Theta_{30}^{(1)} x_{0}+\Theta_{31}^{(1)} x_{1}+\Theta_{32}^{(1)} x_{2}+\Theta_{33}^{(1)} x_{3}\right)$
$h_{\theta}(x)=g\left(\Theta_{10}^{(2)} a_{0}+\Theta_{11}^{(2)} a_{1}+\Theta_{12}^{(2)} a_{2}+\Theta_{13}^{(2)} a_{3}\right)$
If network has s_{l} units in layer I, s_{I+1} units in layer $I+1$, then $\Theta^{(I)}$ will be of dimension $s_{l+1} \times\left(s_{l}+1\right)$

Forward Propagation

$$
\begin{aligned}
a^{(1)} & =x \\
z^{(2)} & =\Theta^{(1)} a^{(1)} \\
a^{(2)} & =g\left(z^{(2)}\right) \quad\left(\text { add } \quad a_{0}^{(2)}\right) \\
z^{(3)} & =\Theta^{(2)} a^{(2)} \\
a^{(3)} & =g\left(z^{(3)}\right) \quad\left(\text { add } \quad a_{0}^{(3)}\right) \\
z^{(4)} & =\Theta^{(3)} a^{(3)} \\
a^{(4)} & =h_{\Theta}(x)=g\left(z^{(4)}\right)
\end{aligned}
$$

Example

Multiple output units: One-vs-all

Car

Motorcycle

Truck

$$
h_{\Theta}(x) \in \mathbb{R}^{4}
$$

Want $h_{\Theta}(x) \approx\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \quad h_{\Theta}(x) \approx\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right], \quad h_{\Theta}(x) \approx\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$, etc. when pedestrian when car when motorcycle

Cost Function and Gradient Computation

- Cost function

$$
\begin{array}{r}
J(\Theta)=-\frac{1}{m}\left[\sum_{i=0}^{m} \sum_{k=1}^{K} y_{k}^{(i)} \log h_{\Theta}\left(x^{(i)}\right)_{k}+\left(1-y_{k}^{(i)}\right) \log \left(1-h_{\Theta}\left(x^{(i)}\right)_{k}\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l}+1}\left(\Theta_{j, i}^{(I)}\right)^{2}
\end{array}
$$

- For minimization of $J(\Theta)$ we have to estimate

$$
\frac{\partial J(\Theta)}{\partial \Theta_{i, j}^{(l)}}
$$

and use gradient method for estimation of

$$
\Theta_{i, j}^{(1)}, \Theta_{i, j}^{(2)}, \ldots, \Theta_{i, j}^{(L)}
$$

Gradient computation: Backpropagation algorithm

- Intuition: $\delta_{i}^{(I)}=$ "error" of node i in layer I
- For each output layer estimate

$$
\begin{aligned}
\frac{\partial J(\Theta)}{\partial \Theta_{i, j}^{(I)}} & =a_{j}^{(I)} \delta_{i}^{(I+1)} \\
\delta_{i}^{(L)} & =a_{i}^{(L)}-y_{i} \\
\delta_{i}^{(I)} & =g\left(z_{i}^{\prime}\right) g\left(1-z_{i}^{\prime}\right) \sum_{k} \delta_{k}^{I+1} \Theta_{k, i}^{\prime}, \quad \text { where } \quad l=2 . . L-(B)
\end{aligned}
$$

Intuition (1)

$$
\frac{\partial J(\Theta)}{\partial \Theta_{i, j}^{(I)}}=\frac{\partial J(\Theta)}{\partial z_{i}^{(I)}} \frac{\partial z_{i}^{(l)}}{\partial \Theta_{i, j}^{(l)}}
$$

Let denote first factor as $\delta_{i}^{(I+1)}=\frac{\partial J(\Theta)}{\partial z_{i}^{(1)}}$
The second factor $\frac{\partial z_{i}^{(I)}}{\partial \Theta_{i, j}^{(1)}}=a_{j}^{(I)}$

$$
\frac{\partial J(\Theta)}{\partial \Theta_{i, j}^{(I)}}=a_{j}^{(I)} \delta_{i}^{(I+1)}
$$

Intuition (3)

$$
\begin{gathered}
\delta_{i}^{(I+1)}=\frac{\partial J(\Theta)}{\partial z_{i}^{(I)}}=\sum_{k} \frac{\partial J(\Theta)}{\partial z_{k}^{(I+1)}} \frac{\partial z_{k}^{(I+1)}}{\partial z_{i}^{(I)}} \\
z_{k}^{(I+1)}=\sum_{j} \Theta_{k, j}^{(I)} a_{j}^{(I)}, \quad \text { where } \quad a_{k}^{(I)}=g\left(z_{j}^{(I)}\right)
\end{gathered}
$$

Right factor in sum is $\frac{\partial z_{k}^{(l+1)}}{\partial z_{i}^{(I)}}=\Theta_{k, i}^{(I)} g^{\prime}\left(z_{i}^{(/)}\right)$
Left factor simply $\frac{\partial J(\Theta)}{\partial z_{k}^{(l+1)}}=\delta_{k}^{(I+2)}$
Finally we get

$$
\delta_{i}^{(I+1)}=\sum_{k} \delta_{k}^{(I+2)} \Theta_{k, i}^{(I)} g^{\prime}\left(z_{i}^{(I)}\right)
$$

Backpropagation Algorithm

Training set $\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)\right\}$
Set $\triangle^{(l)}=0$ (for all l).
For $i=1$ to m
Set $a^{(1)}=x^{(i)}$
Perform forward propagation to compute $a^{(l)}$ for $l=2,3, \ldots, L$
Using $y^{(i)}$, compute $\delta^{(L)}=a^{(L)}-y^{(i)}$
Compute $\delta^{(L-1)}, \delta^{(L-2)}, \ldots, \delta^{(2)}$
$\triangle^{(l)}:=\triangle^{(l)}+\delta^{(l+1)} a^{(l) \top}$
$D^{(l)}:=\frac{1}{m} \triangle^{(l)}+\lambda \Theta^{(l)}$ if $j \neq 0$
$D^{(l)}:=\frac{1}{m} \triangle^{(l)} \quad$ if $j=0$

$$
\frac{\partial}{\partial \Theta_{i j}^{(l)}} J(\Theta)=D_{i j}^{(l)}
$$

Numerical Estimate of Gradient

$$
\begin{aligned}
& \left.\theta \in \mathbb{R}^{n} \quad \text { (E.g. } \theta \text { is "unrolled" version of } \Theta^{(1)}, \Theta^{(2)}, \Theta^{(3)}\right) \\
& \theta=\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n} \\
& \frac{\partial}{\partial \theta_{1}} J(\theta) \approx \frac{J\left(\theta_{1}+\epsilon, \theta_{2}, \theta_{3}, \ldots, \theta_{n}\right)-J\left(\theta_{1}-\epsilon, \theta_{2}, \theta_{3}, \ldots, \theta_{n}\right)}{2 \epsilon} \\
& \frac{\partial}{\partial \theta_{2}} J(\theta) \approx \frac{J\left(\theta_{1}, \theta_{2}+\epsilon, \theta_{3}, \ldots, \theta_{n}\right)-J\left(\theta_{1}, \theta_{2}-\epsilon, \theta_{3}, \ldots, \theta_{n}\right)}{2 \epsilon} \\
& \vdots \\
& \frac{\partial}{\partial \theta_{n}} J(\theta) \approx \frac{J\left(\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}+\epsilon\right)-J\left(\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}-\epsilon\right)}{2 \epsilon}
\end{aligned}
$$

Training a neural network

- Randomly initialize weights
- Implement forward propagation to get $h_{\Theta}(x)$
- Implement code to compute cost function $J(\Theta)$
- Implement backprop to compute partial derivatives $\frac{\partial J(\Theta)}{\partial \Theta_{i, j}^{(1)}}$
- for i in $1: \mathrm{m}$
- Perform forward propagation and backpropagation using example $\left(x^{(i)}, y^{(i)}\right)$ (Get activations $a^{(l)}$ and delta terms $\delta^{(I)}$ for $I=2 . . L)$.
- Use gradient checking to compare $\frac{\partial J(\Theta)}{\partial \Theta_{i, j}^{(I)}}$ computed using backpropagation vs. using numerical estimate of gradient of $J(\Theta)$.
- Use gradient descent or advanced optimization method (BFGS ...) with backpropagation to try to minimize $J(\Theta)$ as a function of parameters Θ

