Important cuts II(HW).

1. Reduce Edge Multiway Cut with $T=3$ to Directed Edge Multiway Cut with $T=2$.
2. Let G be an undirected graph and let $A, B \subseteq V(G)$ be two disjoint sets of vertices. Let $\Delta\left(R_{\min }^{A B}\right)$ and $\Delta\left(R_{\max }^{A B}\right)$ be the minimum (A, B)-cuts, and let $\Delta\left(R_{\text {min }}^{B A}\right)$ and $\Delta\left(R_{\text {max }}^{B A}\right)$ be the minimum (B, A)-cuts(reversing the role of A and B). Show that $R_{\text {min }}^{A B}=V(G) \backslash R_{\text {max }}^{B A}$ and $R_{\text {max }}^{A B}=$ $V(G) \backslash R_{m i n}^{B A}$.
3. Recall algorithm running in time $O^{*}\left(4^{k}\right)$ that finds all important cuts and show that it can actually output a non-important cut.
4. In the Digraph Pair Cut, the input consists of a directed graph G, a designated vertex $s \in V(G)$, a family of pairs of vertices $\mathcal{F} \subseteq\binom{V(G)}{2}$, and an integer k; the goal is to find a set X of at most k edges of G, such that for each pair $\{u, v\} \in \mathcal{F}$, either u or v is not reachable from s in the graph $G-X$. Show an algorithm solving Digraph Pair Cut in time $2^{k} n^{O(1)}$ for an n-vertex graph G.
5. Consider the following vertex-deletion variant of Digraph Pair Cut with a sink: given a directed graph G, designated vertices $s, t \in V(G)$, a family of pairs of vertices $\mathcal{F} \subseteq\binom{V_{2}^{(G)}}{2}$, and an integer k, check if there exists an (s, t)-separator $X \subseteq V(G) \backslash\{s, t\}$ of size at most k such that every pair in \mathcal{F} either contains a vertex of X or contains a vertex that is unreachable from s in $G \backslash X$.
Show how to solve this vertex-deletion variant in time $2^{k} n^{O(1)}$ for an n-vertex graph G, using the algorithm of the previous exercise.
