Important cuts II(HW).

- 1. Reduce Edge Multiway Cut with T = 3 to Directed Edge Multiway Cut with T = 2.
- 2. Let G be an undirected graph and let $A, B \subseteq V(G)$ be two disjoint sets of vertices. Let $\Delta(R_{min}^{AB})$ and $\Delta(R_{max}^{AB})$ be the minimum (A, B)-cuts, and let $\Delta(R_{min}^{BA})$ and $\Delta(R_{max}^{BA})$ be the minimum (B, A)-cuts(reversing the role of A and B). Show that $R_{min}^{AB} = V(G) \setminus R_{max}^{BA}$ and $R_{max}^{AB} = V(G) \setminus R_{min}^{BA}$.
- 3. Recall algorithm running in time $O^*(4^k)$ that finds all important cuts and show that it can actually output a non-important cut.
- 4. In the Digraph Pair Cut, the input consists of a directed graph G, a designated vertex $s \in V(G)$, a family of pairs of vertices $\mathcal{F} \subseteq \binom{V(G)}{2}$, and an integer k; the goal is to find a set X of at most k edges of G, such that for each pair $\{u, v\} \in \mathcal{F}$, either u or v is not reachable from s in the graph G X. Show an algorithm solving Digraph Pair Cut in time $2^k n^{O(1)}$ for an n-vertex graph G.
- 5. Consider the following vertex-deletion variant of Digraph Pair Cut with a sink: given a directed graph G, designated vertices $s, t \in V(G)$, a family of pairs of vertices $\mathcal{F} \subseteq \binom{V(G)}{2}$, and an integer k, check if there exists an (s, t)-separator $X \subseteq V(G) \setminus \{s, t\}$ of size at most k such that every pair in \mathcal{F} either contains a vertex of X or contains a vertex that is unreachable from s in $G \setminus X$.

Show how to solve this vertex-deletion variant in time $2^k n^{O(1)}$ for an *n*-vertex graph *G*, using the algorithm of the previous exercise.