Information Retrieval Term-based Retrieval

> Ilya Markov i.markov@uva.nl

University of Amsterdam

Ilya Markov

Course overview

Next few lectures

Ranking methods

Content-based

- Term-based
- Semantic
- 2 Link-based (web search)
- Learning to rank

- 2 Probabilistic IR
- 3 Language modeling in IR

1 Vector space model

- Method
- Relevance feedback

2 Probabilistic IR

3 Language modeling in IR

1 Vector space model

Method

Relevance feedback

Documents as vectors

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	

. . .

Vector space model

$$sim(d,q) = \cos(ec{v}(d),ec{v}(q)) = rac{ec{v}(d) \cdot ec{v}(q)}{\|ec{v}(d)\| \cdot \|ec{v}(q)\|} \ = rac{\sum_{i=1}^{|V|} d_i \cdot q_i}{\sqrt{\sum_{i=1}^{|V|} d_i^2} \cdot \sqrt{\sum_{i=1}^{|V|} q_i^2}}$$

Manning et al., "Introduction to Information Retrieval"

Ilya Markov

Term frequency

thony J	ulius	The H	amlet O [.]	thello Ma	cbeth
and C	aesar Te	mpest			
opatra					
157	73	0	0	0	1
4	157	0	2	0	0
232	227	0	2	1	0
0	10	0	0	0	0
57	0	0	0	0	0
2	0	3	8	5	8
2	0	1	1	1	5
	thony J and C opatra 157 4 232 0 57 2 2 2	thony Julius and Caesar Te opatra 157 73 157 73 4 232 227 0 0 10 57 0 2 0 2 0 2 0 2 0	thony Julius The H and Caesar Tempest opatra 157 73 0 157 73 0 0 232 227 0 0 0 10 0 57 0 0 2 0 3 2 0 1	thony Julius The Hamlet Of and Caesar Tempest opatra 157 73 0 0 4 157 0 2 232 227 0 2 0 10 0 0 57 0 0 0 2 0 3 8 2 0 1 1	thony Julius The Hamlet Othello Ma and Caesar Tempest 0 0 157 73 0 0 0 4 157 0 2 0 232 227 0 2 1 0 10 0 0 0 57 0 0 0 0 2 0 3 8 5 2 0 1 1 1

. . .

Term frequency

Raw term frequency

Log term frequency

$$egin{aligned} & tf(t,d) \ & \left\{ egin{aligned} 1+\log tf(t,d) & ext{ if } tf(t,d) > 0 \ 0 & ext{ otherwise} \end{aligned}
ight. \end{aligned}$$

Inverse document frequency

$$idf(t) = \log rac{N}{df(t)}$$

- df(t) document frequency of term t
- N total number of documents in a collection

Inverse document frequency

Term	df(t)	idf(t)	
calpurnia	1	6	
animal	100	4	
sunday	1000	3	
fly	10,000	2	
under	100,000	1	
the	1,000,000	0	

for N = 1,000,000 and \log_{10}

Manning et al., "Introduction to Information Retrieval"

Ilya Markov

$$\mathsf{TF}-\mathsf{IDF}(t,d) = tf(t,d) \cdot idf(t)$$

• Term frequency

•
$$tf(t, d)$$

• $\begin{cases} 1 + \log tf(t, d) & \text{if } tf(t, d) > 0 \\ 0 & \text{otherwise} \end{cases}$

• Inverse document frequency

•
$$\log \frac{N}{df(t)}$$

• $\max\{0, \log \frac{N - df(t)}{df(t)}\}$

Vector space model summary

- Documents and queries as vectors
- Rank documents using cosine similarity
- Weights can be
 - binary
 - term frequency
 - ③ TF-IDF

- Method
- Relevance feedback

Relevance feedback

- 1 The user issues a (short, simple) query
- 2 The system returns an initial set of retrieval results
- 3 Some returned results are identified as relevant or non-relevant
- The system computes a better representation of the information need based on this feedback
- 5 The system displays a revised set of retrieval results

Relevance feedback in VSM

- D_r , D_{nr} sets of relevant and non-relevant documents
- $\mu(D_r)$, $\mu(D_{nr})$ vector centroids of the corresponding sets
- Rocchio algorithm

$$ec{q}_{opt} = \operatorname*{argmax}_{ec{q}}[sim(ec{q}, \mu(D_r)) - sim(ec{q}, \mu(D_{nr}))]$$

Approximated as

1

$$egin{aligned} ec{q}_{opt} &= \mu(D_r) + [\mu(D_r) - \mu(D_{nr})] \ &= rac{1}{|D_r|} \sum_{ec{d}_j \in D_r} ec{d}_j + \left[rac{1}{|D_r|} \sum_{ec{d}_j \in D_r} ec{d}_j - rac{1}{|D_{nr}|} \sum_{ec{d}_j \in D_{nr}} ec{d}_j
ight] \end{aligned}$$

Rocchio algorithm

Manning et al., "Introduction to Information Retrieval"

Rocchio algorithm in practice

$$\begin{aligned} \vec{q}_{opt} &= \alpha \vec{q}_0 + \beta \mu(D_r) - \gamma \mu(D_{nr}) \\ &= \alpha \vec{q}_0 + \beta \frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_j \in D_{nr}} \vec{d}_j \end{aligned}$$

- More judged documents \Rightarrow higher values of β and γ
- Reasonable values are $\alpha = 1, \beta = 0.75, \gamma = 0.15$

1 Vector space model

- Method
- Relevance feedback

1 Vector space model

2 Probabilistic IR

- Probability theory and statistics
- Method
- Relevance feedback
- Intermezzo: experimental comparison
- BM25

3 Language modeling in IR

2 Probabilistic IR

Probability theory and statistics

- Method
- Relevance feedback
- Intermezzo: experimental comparison
- BM25

Basic probability theory

- For events A and B
 - Joint probability $P(A \cap B)$ of both events occurring
 - Conditional probability $P(A \mid B)$ of event A occurring given that event B has occurred
- Chain rule

$$P(A,B) = P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

• Partition rule: partition P(B) based on A and \overline{A}

$$P(B) = P(A, B) + P(\overline{A}, B)$$

Ilya Markov

- P(A) prior probability, i.e., the initial estimate of how likely the event A is in the absence of any other information
- $P(B \mid A)$ likelihood of the evidence B given the model A
- P(A | B) posterior probability of A after having seen the evidence B

Manning et al., "Introduction to Information Retrieval"

Ilya Markov

$$O(A) = rac{P(A)}{P(\overline{A})} = rac{P(A)}{1 - P(A)}$$

Conjugate prior

$$\underbrace{\widetilde{p(\theta \mid x)}}_{p(\theta \mid x)} = \frac{\overbrace{p(x \mid \theta)}^{likelihood} \overbrace{p(\theta)}^{prior}}{\int p(x \mid \theta')p(\theta')d\theta'}$$

- The likelihood function p(x | θ) is usually well-determined from a statement of the data-generating process
- For certain choices of the prior distribution $p(\theta)$, the posterior distribution $p(\theta \mid x)$ is in the same family of distributions
- Such distribution $p(\theta)$ is a conjugate prior for the likelihood function $p(x \mid \theta)$

https://en.wikipedia.org/wiki/Conjugate_prior

Conjugate prior for Bernoulli and binomial

- Bernoulli distribution
 - A random variable takes the value 1 with success probability p and the value 0 with failure probability q = 1 p
- Binomial distribution
 - The number of successes in a sequence of *n* independent yes/no experiments, each of which yields success with probability *p* (Bernoulli trial)
- Beta distribution conjugate prior for Bernoulli and binomial

$$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$$

Conjugate prior for Bernoulli and binomial

- Consider n = s + f Bernoulli trials with success probability p
- Likelihood function

$$\mathcal{L}(s,f \mid p=x) = \binom{s+f}{s} x^s (1-x)^f = \binom{n}{s} x^s (1-x)^{n-s}$$

Prior probability

$$P_{prior}(p=x;\alpha_{pr},\beta_{pr}) = \frac{x^{\alpha_{pr}-1}(1-x)^{\beta_{pr}-1}}{B(\alpha_{pr},\beta_{pr})}$$

Posterior probability

$$P_{post}(p = x \mid s, f) = \frac{Prior(p = x; \alpha_{pr}, \beta_{pr})\mathcal{L}(s, f \mid p = x)}{\int_0^1 Prior(p = x; \alpha_{pr}, \beta_{pr})\mathcal{L}(s, f \mid p = x)dx}$$

https://en.wikipedia.org/wiki/Beta_distribution#Bayesian_inference

Ilya Markov

Conjugate prior for Bernoulli and binomial

$$\begin{aligned} P_{post}(p = x \mid s, f) &= \frac{1}{\mathcal{Z}} Prior(p = x; \alpha_{pr}, \beta_{pr}) \cdot \mathcal{L}(s, f \mid p = x) \\ &= \frac{1}{\mathcal{Z}} \binom{n}{s} x^{s} (1 - x)^{n - s} \cdot \frac{x^{\alpha_{pr} - 1} (1 - x)^{\beta_{pr} - 1}}{B(\alpha_{pr}, \beta_{pr})} \\ &= \frac{1}{\mathcal{Z}} \binom{n}{s} \frac{x^{s + \alpha_{pr} - 1} (1 - x)^{n - s + \beta_{pr} - 1}}{B(\alpha_{pr}, \beta_{pr})} \\ &= \frac{\binom{n}{s} x^{s + \alpha_{pr} - 1} (1 - x)^{n - s + \beta_{pr} - 1} / B(\alpha_{pr}, \beta_{pr})}{\int_{0}^{1} \left(\binom{n}{s} x^{s + \alpha_{pr} - 1} (1 - x)^{n - s + \beta_{pr} - 1} / B(\alpha_{pr}, \beta_{pr})\right) dx} \\ &= \frac{x^{s + \alpha_{pr} - 1} (1 - x)^{n - s + \beta_{pr} - 1}}{\int_{0}^{1} (x^{s + \alpha_{pr} - 1} (1 - x)^{n - s + \beta_{pr} - 1}) dx} \\ &= \frac{x^{s + \alpha_{pr} - 1} (1 - x)^{n - s + \beta_{pr} - 1}}{B(s + \alpha_{pr}, n - s + \beta_{pr})} \\ &\sim Beta(s + \alpha_{pr}, n - s + \beta_{pr}) \end{aligned}$$

Conjugate prior for multinomial

- Multinomial distribution
 - The probability of counts for rolling a k-sided dice n times
 - Probability mass function

$$\mathcal{L}(n_1,\ldots,n_k \mid p_1=x_1,\ldots,p_k=x_k)=\frac{n!}{n_1!\ldots n_k!}x_1^{n_1}\ldots x_k^{n_k}$$

- Bernoulli is multinomial with k = 2, n = 1
- Binomial is multinomial with k = 2
- Dirichlet distribution conjugate prior for multinomial

$$P_{prior}(p_1 = x_1, \dots, p_k = x_k; \alpha_1^{pr}, \dots, \alpha_k^{pr}) = \frac{1}{B(\alpha)} \prod_{i=1}^k x_i^{\alpha_i^{pr}-1}$$

• Beta is Dirichlet with k = 2

Posterior

$$P_{post}(p_1 = x_1, \dots, p_k = x_k \mid n_1, \dots, n_k) = \frac{1}{B(\alpha + \mathbf{n})} \prod_{i=1}^k x_i^{\alpha_i^{pr} + n_i - 1}$$

- Probability theory
 - Bayes' rule
 - Odds
- Statistics
 - Conjugate priors

2 Probabilistic IR

• Probability theory and statistics

Method

- Relevance feedback
- Intermezzo: experimental comparison
- BM25

Probability ranking principle (PRP)

- Consider binary relevance $R \in \{0,1\}$ and the probability of relevance $P(R = 1 \mid d, q)$
- PRP in brief

If the retrieved documents d w.r.t. a query q are ranked decreasingly on their probability of relevance P(R = 1 | d, q), then the effectiveness of the system will be the best that is obtainable.

• The relevance of each document is independent of the relevance of other documents

Binary independence model (BIM)

- **Binary** (equivalent to Boolean): documents and queries are represented as binary term incidence vectors
- Independence: no association between terms

Binary incidence matrix

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	

. . .
Ranking under BIM

- Represent documents d and queries q as vectors \vec{x} and \vec{q}
- Rank documents by the probability of relevance w.r.t. a query $P(R = 1 \mid \vec{x}, \vec{q})$
- Rank documents by odds $O(R \mid \vec{x}, \vec{q}) = \frac{P(R=1 \mid \vec{x}, \vec{q})}{P(R=0 \mid \vec{x}, \vec{q})}$

Computing odds

$$O(R \mid \vec{x}, \vec{q}) = \frac{P(R = 1 \mid \vec{x}, \vec{q})}{P(R = 0 \mid \vec{x}, \vec{q})} = \frac{\frac{P(R = 1 \mid \vec{q})P(\vec{x} \mid R = 1, \vec{q})}{P(\vec{x} \mid \vec{q})}}{\frac{P(R = 0 \mid \vec{q})P(\vec{x} \mid R = 0, \vec{q})}{P(\vec{x} \mid \vec{q})}}$$
$$= \frac{P(R = 1 \mid \vec{q})}{P(R = 0 \mid \vec{q})} \cdot \frac{P(\vec{x} \mid R = 1, \vec{q})}{P(\vec{x} \mid R = 0, \vec{q})}$$
$$\stackrel{\text{rank}}{=} \frac{P(\vec{x} \mid R = 1, \vec{q})}{P(\vec{x} \mid R = 0, \vec{q})}$$

Computing odds (cont'd)

$$O(R \mid \vec{x}, \vec{q}) \stackrel{\text{rank}}{=} \frac{P(\vec{x} \mid R = 1, \vec{q})}{P(\vec{x} \mid R = 0, \vec{q})} = \prod_{t=1}^{M} \frac{P(x_t \mid R = 1, \vec{q})}{P(x_t \mid R = 0, \vec{q})}$$
$$= \prod_{t:x_t=1} \frac{P(x_t = 1 \mid R = 1, \vec{q})}{P(x_t = 1 \mid R = 0, \vec{q})} \cdot \prod_{t:x_t=0} \frac{P(x_t = 0 \mid R = 1, \vec{q})}{P(x_t = 0 \mid R = 0, \vec{q})}$$
$$= \prod_{t:x_t=1} \frac{P_t}{u_t} \cdot \prod_{t:x_t=0} \frac{1 - p_t}{1 - u_t}$$

Computing odds (cont'd)

- *p_t* = *P*(*x_t* = 1 | *R* = 1, *q*) − the probability of a term appearing in a relevant document
- *u_t* = *P*(*x_t* = 1 | *R* = 0, *q*) − the probability of a term appearing in a non-relevant document

		Doc. rel. ($R=1$)	Doc. non-rel. ($R = 0$)
Term present	$x_t = 1$	p _t	Ut
Term absent	$x_t = 0$	$1 - p_t$	$1-u_t$

• Assume that if $q_t = 0$, then $p_t = u_t$

Manning et al., "Introduction to Information Retrieval"

Computing odds (cont'd)

$$O(R \mid \vec{x}, \vec{q}) \stackrel{\text{rank}}{=} \prod_{t:x_t=q_t=1} \frac{p_t}{u_t} \cdot \prod_{t:x_t=0, q_t=1} \frac{1-p_t}{1-u_t}$$
$$= \prod_{t:x_t=q_t=1} \frac{p_t(1-u_t)}{u_t(1-p_t)} \cdot \prod_{t:q_t=1} \frac{1-p_t}{1-u_t}$$
$$\stackrel{\text{rank}}{=} \prod_{t:x_t=q_t=1} \frac{p_t(1-u_t)}{u_t(1-p_t)}$$

Retrieval status value (RSV)

Retrieval status value

$$RSV_d = \log \prod_{t:x_t = q_t = 1} \frac{p_t(1 - u_t)}{u_t(1 - p_t)} = \sum_{t:x_t = q_t = 1} \log \frac{p_t(1 - u_t)}{u_t(1 - p_t)}$$

Log odds ratio

$$c_t = \log \frac{p_t(1-u_t)}{u_t(1-p_t)} = \log \frac{p_t}{1-p_t} - \log \frac{u_t}{1-u_t}$$

•
$$RSV_d = \sum_{t:x_t=q_t=1} c_t$$

• Similar to VSM with c_t as term weights

Computing p_t and u_t

		Doc. rel.	Doc. non-rel.	Total
Term present Term absent	$\begin{array}{l} x_t = 1 \\ x_t = 0 \end{array}$	s S – s	$\frac{df(t) - s}{[N - df(t)] - [S - s]}$	$\left egin{array}{c} df(t) \ N-df(t) \end{array} ight $
	Total	5	N-S	N

$$p_t = \frac{s}{S}$$

$$u_t = \frac{df(t) - s}{N - S}$$

$$c_t = \log \frac{s}{S - s} - \log \frac{df(t) - s}{[N - df(t)] - [S - s]} \approx \log \frac{s}{S - s} - \log \frac{df(t)}{N - df(t)}$$

Manning et al., "Introduction to Information Retrieval"

Probabilistic IR summary

- Probability ranking principle (PRP)
 - Rank documents by $P(R = 1 \mid d, q)$
 - Need to estimate $P(R = 1 \mid d, q)$
- Binary independence model (BIM)
 - Binary representation of documents/queries/relevance
 - Terms are independent
- Retrieval status value

$$RSV_d = \sum_{t:x_t=q_t=1} \log \frac{p_t(1-u_t)}{u_t(1-p_t)}$$

Computing p_t and u_t

$$p_t = \frac{s}{S}, \ u_t = \frac{df(t) - s}{N - S}$$

2 Probabilistic IR

- Probability theory and statistics
- Method

Relevance feedback

- Intermezzo: experimental comparison
- BM25

Relevance feedback in probabilistic retrieval

- 1 Guess initial estimates of p_t and u_t
- 2 Rank results by RSV
- 3 Suppose a user judged V results, where $VR = \{d \in V : R_{dq} = 1\}$
- (4) If VR is large enough, then reestimate p_t and u_t

$$p_t = rac{VR_t}{VR}, \ u_t = rac{df(t) - VR_t}{N - VR}$$

S Repeat from step 2

Manning et al., "Introduction to Information Retrieval"

Ilya Markov

Relevance feedback in probabilistic retrieval

- VR is usually small
- Use Bayesian estimation via conjugate priors
- The distribution of p_t and u_t is Bernoulli
- The conjugate prior is beta
- The Bayesian estimate for p_t (u_t is similar):

$$p_t^{(t+1)} = \frac{|VR_t| + \kappa p_t^{(k)}}{|VR| + \kappa}$$

• Why do we need κ ?

2 Probabilistic IR

- Probability theory and statistics
- Method
- Relevance feedback

• Intermezzo: experimental comparison

• BM25

Content-based retrieval methods

run	precisi	on at re	call:	average
	0.2	0.5	0.8	precision
tfc.tfc probabilistic Lnu.ltu BM25 LM	$\begin{array}{c} 0.211 \\ 0.247 \\ 0.365 \\ 0.392 \\ 0.428 \end{array}$	$\begin{array}{c} 0.100 \\ 0.185 \\ 0.227 \\ 0.242 \\ 0.265 \end{array}$	$\begin{array}{c} 0.026 \\ 0.079 \\ 0.065 \\ 0.073 \\ 0.130 \end{array}$	$\begin{array}{c} 0.126 \\ 0.165 \\ 0.229 \\ 0.243 \\ 0.277 \end{array}$

D. Hiemstra and A. de Vries, "Relating the new language models of information retrieval to the traditional retrieval models"

Improvements that don't add up (baselines)

- Over half the baseline scores are below the median score (TREC systems in 1999)
- Only four baselines are in the top quartile
- Only one baseline is close to the best of the original TREC 1999 submissions
- The mean baseline score prior to 2005 is 0.260; from 2005 onwards it is 0.245

Figure: TREC-8 Ad-Hoc

Improvements that don't add up (improvements)

- The improved scores do not trend upwards over time
- Only five of the 30 improved scores are in the top quartile
- Only two title-only systems beat the best automatic TREC 1999 title-only system
- No system beats the best automatic TREC 1999 system across all query types

Figure: TREC-8 Ad-Hoc

Additivity of improvements

Toggle	Enabled	Disabled
Term Smoothing	Dirichlet Prior [Zhai and Lafferty, 2004].	Jelinek-Mercer.
Ordered Phrases	Ordered proximity windows, with a maximum of 4 terms between each occurence, scored for every sequence of 2 or 3 terms in the original query [Metzler and Croft, 2005]. Tuning resulted in a weighting of 0.1/1.0.	No ordered proximity.
Unordered Proximity	Unordered proximity windows, with a maximum size of four times the number of terms being scored, for every sequence of two or three terms in the original query [Metzler and Croft, 2005] (This diverges slightly from the original method. described in the paper, but the number of possible combinations grows exponentially with query length). Tuning resulted in a weighting of $0.1/1.0$.	No unordered proximity.
Query Expansion	Pseudo relevance feedback, using Indri's adapted version of relevance modelling [Lavrenko and Croft, 2001] with a total of twenty terms selected from ten documents, weighting the original query as 0.3 and the expanded query 0.7.	No query expansion.
Stemming	Porter Stemming.	No stemming.
Stopping	Stopping using the standard list of 417 stopwords included in Indri.	No stopping.

Additivity of improvements

- There is a positive relationship between the number of options turned on and the retrieval effectiveness achieved
- Options are broadly additive

Additivity of improvements

- The improvement, that an option offers, depends upon the combination of other options
- The improvements are highly variable
- T. Armstrong et al., "Improvements That Don't Add Up: Ad-Hoc Retrieval Results Since 1998"

Ilya Markov

2 Probabilistic IR

- Probability theory and statistics
- Method
- Relevance feedback
- Intermezzo: experimental comparison
- BM25

Probabilistic retrieval revisited

- Assumptions
 - Boolean representation of documents/queries/relevance
 - Term independence
 - Out-of-query terms do not affect retrieval
 - Document relevance values are independent
- Similar to VSM
- But does not consider the term frequency and document length

• Start with a simple RSV

$$RSV_d = \sum_{t \in q} \log\left[\frac{N}{df(t)}\right]$$

• Factor in the term frequency and document length

$$RSV_{d} = \sum_{t \in q} \log \left[\frac{N}{df(t)} \right] \cdot \frac{(k_{1}+1) \cdot tf(t,d)}{k_{1} \cdot \left[(1-b) + b \cdot \frac{dl(d)}{dl_{ave}} \right] + tf(t,d)}$$

- k_1 , b parameters
- dl(d) length of document d
- dl_{ave} average document length

$$BM25_{d} = \sum_{t \in q} \log \left[\frac{N}{df(t)} \right] \cdot \frac{(k_{1}+1) \cdot tf(t,d)}{k_{1} \cdot \left[(1-b) + b \cdot \frac{dl(d)}{dl_{ave}} \right] + tf(t,d)}$$

- What if $k_1 \in \{0, 1, \infty\}$?
- What of $b \in \{0, 1\}$?
- What if tf(t, d) is small/large? $k_1 \in [1.2, 2], b = 0.75$.

BM25 for long queries

$$BM25_d = \sum_{t \in q} \log \left[\frac{N}{df(t)} \right] \cdot \frac{(k_1 + 1) \cdot tf(t, d)}{k_1 \cdot \left[(1 - b) + b \cdot \frac{dl(d)}{dl_{ave}} \right] + tf(t, d)} \cdot \frac{(k_3 + 1)tf(t, q)}{k_3 + tf(t, q)}$$

Relevance feedback for BM25

$$BM25_{d} = \sum_{t \in q} \log \left[\frac{N}{df(t)}\right] \cdot \frac{(k_{1}+1) \cdot tf(t,d)}{k_{1} \cdot \left[(1-b) + b \cdot \frac{dI(d)}{dl_{ave}}\right] + tf(t,d)}$$

Use log odds instead

$$c_t = \log \frac{p_t(1-u_t)}{u_t(1-p_t)}$$

• Estimate p_t and u_t through relevance feedback

$$p_t = rac{VR_t}{VR}, \ u_t = rac{df(t) - VR_t}{N - VR}$$

• Plug p_t and u_t into c_t and then c_t into $BM25_d$

$$c_t = \log \frac{|VR_t|/|VNR_t|}{[df(t) - |VR_t|]/[(N - |VR|) - (df(t) - |VR_t|)]}$$

Summary

Probabilistic IR

- Probability theory and statistics
- Method
- Relevance feedback
- Intermezzo: experimental comparison
- BM25

- 1 Vector space model
- 2 Probabilistic IR
- 3 Language modeling in IR
 - Method
 - Relevance feedback
 - Smoothing

3 Language modeling in IR Method

- Relevance feedback

Language model

A statistical language model is a probability distribution over sequences of words.

- Given a sequence of length m
- A language model assigns probability $P(w_1, ..., w_m)$ to this sequence
- Unigram language model

$$P(w_1,\ldots,w_m)=P(w_1)\ldots P(w_m)$$

Bi-gram language model

$$P(w_1,...,w_m) = P(w_1)P(w_2 | w_1)P(w_3 | w_2)...P(w_m | w_{m-1})$$

https://en.wikipedia.org/wiki/Language_model

Ilya Markov

Unigram language model example

Model M	1	Model M	2
the	0.2	the	0.15
a	0.1	a	0.12
frog	0.01	frog	0.0002
toad	0.01	toad	0.0001
said	0.03	said	0.03
likes	0.02	likes	0.04
that	0.04	that	0.04
dog	0.005	dog	0.01
cat	0.003	cat	0.015
monkey	0.001	monkey	0.002

Manning et al., "Introduction to Information Retrieval"

Query likelihood model

• Rank documents by their likelihood given a query

$$P(d \mid q) = rac{P(q \mid d)P(d)}{P(q)}$$

• The prior distribution over queries P(q) does not affect the ranking for a particular query

$$P(d \mid q) \stackrel{rank}{=} P(q \mid d)P(d)$$

• Usually, the prior distribution over documents *P*(*d*) is assumed to be uniform

$$\mathsf{P}(d \mid q) \stackrel{rank}{=} \mathsf{P}(q \mid d)$$

P(q | d) = P(q | M_d) is the probability that the query q is generated by the document language model M_d

Ilya Markov

Estimating query likelihood

• "Bag of words" assumption: terms are independent

$$P(q \mid M_d) = \prod_{t \in q} P(t \mid M_d)$$

Unigram language model

$$P(t \mid M_d) = \frac{tf(t, d)}{dI(d)}$$

- If some query terms do not appear in document d, then $P(q \mid M_d) = 0$
- This is addressed by smoothing (discussed later)

3 Language modeling in IR

- Method
- Relevance feedback

Relevance model

- Assume there is an oracle language model *M_r*, called the *relevance model*
- Kullback-Leibler divergence between M_r and M_d

$$\begin{aligned} \mathsf{KL}(M_r \| M_d) &= \sum_{t \in V} \mathsf{P}(t \mid M_r) \log \frac{\mathsf{P}(t \mid M_r)}{\mathsf{P}(t \mid M_d)} \\ &= \sum_{t \in V} \left[\mathsf{P}(t \mid M_r) \log \mathsf{P}(t \mid M_r) - \mathsf{P}(t \mid M_r) \log \mathsf{P}(t \mid M_d) \right] \\ &\stackrel{rank}{=} - \sum_{t \in V} \mathsf{P}(t \mid M_r) \log \mathsf{P}(t \mid M_d) \end{aligned}$$

Estimating relevance model

• If we assume that the relevance model M_r is the query language model M_q , then

$$P(t \mid M_r) = \frac{tf(t,q)}{|q|}$$

- The out-of-query terms do not contribute to the KL score
- If we assume that query terms are sampled from the relevance model M_r , then

$$P(t \mid M_r) \approx P(t \mid q_1, \ldots, q_n)$$

Estimating relevance model (cont'd)

$$P(t \mid M_r) \approx P(t \mid q_1, \dots, q_n)$$

$$= \frac{P(t, q_1, \dots, q_n)}{P(q_1, \dots, q_n)}$$

$$\stackrel{rank}{=} \sum_{d \in \mathcal{C}} P(t, q_1, \dots, q_n \mid d) P(d)$$

$$= \sum_{d \in \mathcal{C}} P(d) P(t \mid M_d) \prod_{i=1}^n P(q_i \mid M_d)$$

$$\stackrel{rank}{=} \sum_{d \in \mathcal{C}} w_d \cdot P(t \mid M_d), \text{ where}$$

$$w_d = \prod_{i=1}^n P(q_i \mid M_d)$$

 $P(t \mid M_r)$ is the weighted average of $P(t \mid M_d)$ in a set of documents C, where weights are the query likelihood scores $\prod_{i=1}^{n} P(q_i \mid M_d)$.

Ilya Markov

Relevance feedback

- **1** Rank results using the query likelihood score $P(q \mid d)$
- ② Obtain a set of relevant results C through (pseudo-)relevance feedback
- 3 Calculate the relevance model $P(t \mid M_r)$

$$egin{aligned} P(t \mid M_r) &= \sum_{d \in \mathcal{C}} w_d \cdot P(t \mid M_d) \ w_d &= \prod_{i=1}^n P(q_i \mid M_d) \end{aligned}$$

 Rerank results using the negative KL-divergence score (or negative cross entropy)

$$\sum_{t \in V} P(t \mid M_r) \log P(t \mid M_d)$$

3 Language modeling in IR

- Method
- Relevance feedback
- Smoothing

Jelinek-Mercer smoothing

$$P_s(t \mid M_d) = \lambda P(t \mid M_d) + (1 - \lambda)P(t \mid M_c)$$
$$= \lambda \frac{tf(t, d)}{dl(d)} + (1 - \lambda)\frac{cf(t)}{cl}$$

- cf(t) collection frequency of term t
- cl collection length
- Smoothed query likelihood

$$P_s(q \mid M_d) = \prod_{i=1}^n \left[\lambda \frac{tf(q_i, d)}{dl(d)} + (1 - \lambda) \frac{cf(q_i)}{cl} \right]$$

Relationship to TF-IDF

$$\log P_s(q \mid M_d) = \sum_{i=1}^n \log \left[\lambda \frac{tf(q_i, d)}{dl(d)} + (1 - \lambda) \frac{cf(q_i)}{cl} \right]$$
$$= \sum_{i:tf(q_i, d) > 0} \log \left[\lambda \frac{tf(q_i, d)}{dl(d)} + (1 - \lambda) \frac{cf(q_i)}{cl} \right]$$
$$+ \sum_{i:tf(q_i, d) = 0} \log(1 - \lambda) \frac{cf(q_i)}{cl}$$
$$rank = \sum_{i:tf(q_i, d) > 0} \log \frac{\lambda \frac{tf(q_i, d)}{dl(d)} + (1 - \lambda) \frac{cf(q_i)}{cl}}{(1 - \lambda) \frac{cf(q_i)}{cl}}$$
$$= \sum_{i:tf(q_i, d) > 0} \log \left[\frac{\lambda \frac{tf(q_i, d)}{dl(d)}}{(1 - \lambda) \frac{cf(q_i)}{cl}} + 1 \right]$$

Dirichlet smoothing

A unigram language model can be seen as a multinomial distribution over words L_d(n₁,..., n_k | p₁,..., p_k)

•
$$n_i = tf(t_i, d)$$

• $p_i = P(t_i \mid M_d)$

 The conjugate prior for multinomial is the Dirichlet distribution P_{prior}(p₁,..., p_k; α^{pr}₁,..., α^{pr}_k)

•
$$\alpha_i^{pr} = \mu P(t_i \mid M_c)$$

• μ is a smoothing parameter $(\lambda = \frac{dl}{dl+\mu})$

- The posterior is the Dirichlet distribution with parameters $\alpha_i^{po} = n_i + \alpha_i^{pr} = tf(t_i, d) + \mu P(t_i \mid M_c)$
- Dirichlet smoothing

$$P_s(t \mid M_d) = \frac{tf(t_i, d) + \mu P(t_i \mid M_c)}{dI(d) + \mu}$$

Chinese restaurant process

- Start with an empty restaurant
- 2 The 1st customer sits at the 1st table and chooses dish x from the restaurant's menu with probability P(x | menu)
- 3 The n + 1th customer has two options
 - a) Sit at the 1st unoccupied table with probability $\frac{\mu}{n+\mu}$ and choose dish x from the menu
 - b) Sit at any of the occupied tables with probability $\frac{n_t}{n+\mu}$ and eat the same dish x_t as others at that table

$$P(ext{customer } n+1 ext{ eats } ext{dish } x) = rac{\sum_{t:x} n_t + \mu P(x \mid ext{menu})}{n+\mu}$$

Dirichlet smoothing as Chinese restaurant process

CRP	IR
dish restaurant	word document
menu	collection

Experimental comparison

Collection	Method	Parameter	MAP	R-Prec.	Prec@10
Trec8 T	Okapi BM25	Okapi	0.2292	0.2820	0.4380
	JM	$\lambda = 0.7$	0.2310 (p=0.8181)	0.2889 (p=0.3495)	0.4220 (p=0.3824)
	Dir	$\mu = 2,000$	0.2470 (p=0.0757)	0.2911 (p=0.3739)	0.4560 (p=0.3710)
	Dis	$\delta = 0.7$	0.2384 (p=0.0686)	0.2935 (p=0.0776)	0.4440 (p=0.6727)
	Two-Stage	auto	0.2406 (p=0.0650)	0.2953 (p=0.0369)	0.4260 (p=0.4282)

Figure: TREC-8 Newswire, ad-hoc track, queries 401-450, title-only

G. Bennett, "A Comparative Study of Probabilistic and Language Models for Information Retrieval"

Experimental comparison

Collection	Method	Parameter	MAP	R-Prec.	Prec@10
TREC-	Okapi	Okapi	0.1522	0.2056	0.2918
2001 T	BM25				
	JM	$\lambda = 0.7$	0.1113	0.1505	0.2122
			(p=0.0003)	(p=0.0037)	(p=0.0003)
	Dir	$\mu = 2,000$	0.1774	0.2238	0.3184
			(p=0.0307)	(p=0.3236)	(p=0.3165)
	Dis	$\delta = 0.7$	0.1370	0.1906	0.2653
			(p=0.0511)	(p=0.053)	(p=0.1348)
	Two-Stage	auto	0.1441	0.1934	0.2898
			(p=0.2963)	(p=0.3992)	(p=0.8962)

Figure: TREC-2001 Web data, ad-hoc track, queries 501-550, title-only

G. Bennett, "A Comparative Study of Probabilistic and Language Models for Information Retrieval"

Language modeling for IR summary

- Query likelihood model
- Relevance feedback
- Smoothing
 - Jelinek-Mercer smoothing
 - Dirichlet smoothing

Content-based retrieval

Content-based retrieval summary

- Vector space model
 - Documents and queries as vectors
 - Rank documents using cosine similarity
 - TF-IDF weights
- Probabilistic IR
 - Probability ranking principle
 - Binary independence model
 - Rank documents using odds or retrieval status value
 - BM25
- Language modeling in IR
 - Query likelihood model
 - Jelinek-Mercer and Dirichlet smoothing
- Relevance feedback

- Manning et al., Chapters 6, 9, 11, 12
- Croft et al., Chapter 7

Next lectures

Ranking methods

- Content-based
 - Term-based
 - Semantic
- 2 Link-based (web search)
- Learning to rank