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Ranking methods

1 Content-based
Term-based
Semantic

2 Link-based (web search)
3 Learning to rank
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Documents as vectors

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Manning et al., “Introduction to Information Retrieval”
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Vector space model
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Manning et al., “Introduction to Information Retrieval”
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Term frequency

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Manning et al., “Introduction to Information Retrieval”
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Term frequency

Raw term frequency tf (t, d)

Log term frequency

{
1+ log tf (t, d) if tf (t, d) > 0
0 otherwise
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Inverse document frequency

idf (t) = log
N

df (t)

df (t) – document frequency of term t

N – total number of documents in a collection
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Inverse document frequency

Term df (t) idf (t)

calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

for N = 1, 000, 000 and log10

Manning et al., “Introduction to Information Retrieval”
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TF-IDF

TF-IDF(t, d) = tf (t, d) · idf (t)

Term frequency
tf (t, d){
1+ log tf (t, d) if tf (t, d) > 0
0 otherwise

Inverse document frequency
log N

df (t)

max{0, log N−df (t)
df (t) }
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Vector space model summary

Documents and queries as vectors
Rank documents using cosine similarity
Weights can be

1 binary
2 term frequency
3 TF-IDF
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Relevance feedback

1 The user issues a (short, simple) query
2 The system returns an initial set of retrieval results
3 Some returned results are identified as relevant or non-relevant
4 The system computes a better representation of the

information need based on this feedback
5 The system displays a revised set of retrieval results

Ilya Markov i.markov@uva.nl Information Retrieval 17
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Relevance feedback in VSM

Dr , Dnr – sets of relevant and non-relevant documents
µ(Dr ), µ(Dnr ) – vector centroids of the corresponding sets
Rocchio algorithm

~qopt = argmax
~q

[sim(~q, µ(Dr ))− sim(~q, µ(Dnr ))]

Approximated as

~qopt = µ(Dr ) + [µ(Dr )− µ(Dnr )]

=
1
|Dr |

∑
~dj∈Dr

~dj +

 1
|Dr |

∑
~dj∈Dr

~dj −
1
|Dnr |

∑
~dj∈Dnr

~dj


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Rocchio algorithm

x

x

x

x

xx

µ⃗R

µ⃗NR

µ⃗R − µ⃗NRq⃗opt

Manning et al., “Introduction to Information Retrieval”
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Rocchio algorithm in practice

~qopt = α~q0 + βµ(Dr )− γµ(Dnr )

= α~q0 + β
1
|Dr |

∑
~dj∈Dr

~dj − γ
1
|Dnr |

∑
~dj∈Dnr

~dj

More judged documents ⇒ higher values of β and γ
Reasonable values are α = 1, β = 0.75, γ = 0.15
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Basic probability theory

For events A and B

Joint probability P(A ∩ B) of both events occurring
Conditional probability P(A | B) of event A occurring
given that event B has occurred

Chain rule

P(A,B) = P(A ∩ B) = P(A | B)P(B) = P(B | A)P(A)

Partition rule: partition P(B) based on A and A

P(B) = P(A,B) + P(A,B)

Manning et al., “Introduction to Information Retrieval”
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Bayes’ rule

posterior︷ ︸︸ ︷
P(A | B) =

likelihood︷ ︸︸ ︷
P(B | A)

prior︷ ︸︸ ︷
P(A)

P(B)
=

[
P(B | A)∑

X∈{A,A} P(B,X )

]
P(A)

=

[
P(B | A)∑

X∈{A,A} P(B | X )P(X )

]
P(A)

P(A) – prior probability, i.e., the initial estimate of how likely
the event A is in the absence of any other information
P(B | A) – likelihood of the evidence B given the model A
P(A | B) – posterior probability of A after having seen
the evidence B

Manning et al., “Introduction to Information Retrieval”
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Odds

O(A) =
P(A)

P(A)
=

P(A)

1− P(A)
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Conjugate prior

posterior︷ ︸︸ ︷
p(θ | x) =

likelihood︷ ︸︸ ︷
p(x | θ)

prior︷︸︸︷
p(θ)∫

p(x | θ′)p(θ′)dθ′

The likelihood function p(x | θ) is usually well-determined
from a statement of the data-generating process
For certain choices of the prior distribution p(θ), the posterior
distribution p(θ | x) is in the same family of distributions
Such distribution p(θ) is a conjugate prior for the likelihood
function p(x | θ)

https://en.wikipedia.org/wiki/Conjugate_prior

Ilya Markov i.markov@uva.nl Information Retrieval 27
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Conjugate prior for Bernoulli and binomial

Bernoulli distribution
A random variable takes the value 1 with success probability p
and the value 0 with failure probability q = 1− p

Binomial distribution
The number of successes in a sequence of n independent
yes/no experiments, each of which yields success with
probability p (Bernoulli trial)

Beta distribution – conjugate prior for Bernoulli and binomial

xα−1(1− x)β−1

B(α, β)

Ilya Markov i.markov@uva.nl Information Retrieval 28
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Conjugate prior for Bernoulli and binomial

Consider n = s + f Bernoulli trials with success probability p

Likelihood function

L(s, f | p = x) =

(
s + f

s

)
x s(1− x)f =

(
n

s

)
x s(1− x)n−s

Prior probability

Pprior (p = x ;αpr , βpr ) =
xαpr−1(1− x)βpr−1

B(αpr , βpr )

Posterior probability

Ppost(p = x | s, f ) = Prior(p = x ;αpr , βpr )L(s, f | p = x)∫ 1
0 Prior(p = x ;αpr , βpr )L(s, f | p = x)dx

https://en.wikipedia.org/wiki/Beta_distribution#Bayesian_inference

Ilya Markov i.markov@uva.nl Information Retrieval 29
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Conjugate prior for Bernoulli and binomial

Ppost(p = x | s, f ) = 1
Z Prior(p = x ;αpr , βpr ) · L(s, f | p = x)

=
1
Z

(
n

s

)
x s(1− x)n−s · x

αpr−1(1− x)βpr−1

B(αpr , βpr )

=
1
Z

(
n

s

)
x s+αpr−1(1− x)n−s+βpr−1

B(αpr , βpr )

=

(
n
s

)
x s+αpr−1(1− x)n−s+βpr−1/B(αpr , βpr )∫ 1

0

((
n
s

)
x s+αpr−1(1− x)n−s+βpr−1/B(αpr , βpr )

)
dx

=
x s+αpr−1(1− x)n−s+βpr−1∫ 1

0 (x s+αpr−1(1− x)n−s+βpr−1) dx

=
x s+αpr−1(1− x)n−s+βpr−1

B(s + αpr , n − s + βpr )

∼ Beta(s + αpr , n − s + βpr )
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Conjugate prior for multinomial

Multinomial distribution
The probability of counts for rolling a k-sided dice n times
Probability mass function

L(n1, . . . , nk | p1 = x1, . . . , pk = xk ) =
n!

n1! . . . nk !
xn11 . . . x

nk
k

Bernoulli is multinomial with k = 2, n = 1
Binomial is multinomial with k = 2

Dirichlet distribution – conjugate prior for multinomial

Pprior (p1 = x1, . . . , pk = xk ;α
pr
1 , . . . , α

pr
k ) =

1
B(α)

k∏
i=1

x
αpr

i −1
i

Beta is Dirichlet with k = 2

Posterior

Ppost(p1 = x1, . . . , pk = xk | n1, . . . , nk) =
1

B(α+ n)

k∏
i=1

x
αpr

i +ni−1
i
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Probability ranking principle (PRP)

Consider binary relevance R ∈ {0, 1} and the probability of
relevance P(R = 1 | d , q)
PRP in brief

If the retrieved documents d w.r.t. a query q are ranked
decreasingly on their probability of relevance P(R = 1 | d , q), then
the effectiveness of the system will be the best that is obtainable.

The relevance of each document is independent of the
relevance of other documents

Manning et al., “Introduction to Information Retrieval”

Ilya Markov i.markov@uva.nl Information Retrieval 34



Vector space model Probabilistic IR Language modeling in IR

Binary independence model (BIM)

Binary (equivalent to Boolean): documents and queries are
represented as binary term incidence vectors
Independence: no association between terms

Manning et al., “Introduction to Information Retrieval”
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Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Manning et al., “Introduction to Information Retrieval”
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Ranking under BIM

Represent documents d and queries q as vectors ~x and ~q
Rank documents by the probability of relevance w.r.t. a query
P(R = 1 | ~x , ~q)
Rank documents by odds O(R | ~x , ~q) = P(R=1|~x ,~q)

P(R=0|~x ,~q)

Ilya Markov i.markov@uva.nl Information Retrieval 37
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Computing odds

O(R | ~x , ~q) = P(R = 1 | ~x , ~q)
P(R = 0 | ~x , ~q) =

P(R=1|~q)P(~x |R=1,~q)
P(~x |~q)

P(R=0|~q)P(~x |R=0,~q)
P(~x |~q)

=
P(R = 1 | ~q)
P(R = 0 | ~q) ·

P(~x | R = 1, ~q)
P(~x | R = 0, ~q)

rank
=

P(~x | R = 1, ~q)
P(~x | R = 0, ~q)

Ilya Markov i.markov@uva.nl Information Retrieval 38
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Computing odds (cont’d)

O(R | ~x , ~q) rank
=

P(~x | R = 1, ~q)
P(~x | R = 0, ~q)

=
M∏
t=1

P(xt | R = 1, ~q)
P(xt | R = 0, ~q)

=
∏

t:xt=1

P(xt = 1 | R = 1, ~q)
P(xt = 1 | R = 0, ~q)

·
∏

t:xt=0

P(xt = 0 | R = 1, ~q)
P(xt = 0 | R = 0, ~q)

=
∏

t:xt=1

pt
ut
·
∏

t:xt=0

1− pt
1− ut

Ilya Markov i.markov@uva.nl Information Retrieval 39
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Computing odds (cont’d)

pt = P(xt = 1 | R = 1, ~q) – the probability of a term
appearing in a relevant document
ut = P(xt = 1 | R = 0, ~q) – the probability of a term
appearing in a non-relevant document

Doc. rel. (R = 1) Doc. non-rel. (R = 0)

Term present xt = 1 pt ut
Term absent xt = 0 1− pt 1− ut

Assume that if qt = 0, then pt = ut

Manning et al., “Introduction to Information Retrieval”
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Computing odds (cont’d)

O(R | ~x , ~q) rank
=

∏
t:xt=qt=1

pt
ut
·

∏
t:xt=0,qt=1

1− pt
1− ut

=
∏

t:xt=qt=1

pt(1− ut)

ut(1− pt)
·
∏

t:qt=1

1− pt
1− ut

rank
=

∏
t:xt=qt=1

pt(1− ut)

ut(1− pt)

Ilya Markov i.markov@uva.nl Information Retrieval 41
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Retrieval status value (RSV)

Retrieval status value

RSVd = log
∏

t:xt=qt=1

pt(1− ut)

ut(1− pt)
=

∑
t:xt=qt=1

log
pt(1− ut)

ut(1− pt)

Log odds ratio

ct = log
pt(1− ut)

ut(1− pt)
= log

pt
1− pt

− log
ut

1− ut

RSVd =
∑

t:xt=qt=1 ct

Similar to VSM with ct as term weights

Ilya Markov i.markov@uva.nl Information Retrieval 42
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Computing pt and ut

Doc. rel. Doc. non-rel. Total

Term present xt = 1 s df (t)− s df (t)
Term absent xt = 0 S − s [N − df (t)]− [S − s] N − df (t)

Total S N − S N

pt =
s

S

ut =
df (t)− s

N − S

ct = log
s

S − s
− log

df (t)− s

[N − df (t)]− [S − s]
≈ log

s

S − s
− log

df (t)

N − df (t)

Manning et al., “Introduction to Information Retrieval”
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Probabilistic IR summary

Probability ranking principle (PRP)
Rank documents by P(R = 1 | d , q)
Need to estimate P(R = 1 | d , q)

Binary independence model (BIM)
Binary representation of documents/queries/relevance
Terms are independent

Retrieval status value

RSVd =
∑

t:xt=qt=1

log
pt(1− ut)

ut(1− pt)

Computing pt and ut

pt =
s

S
, ut =

df (t)− s

N − S

Ilya Markov i.markov@uva.nl Information Retrieval 44



Vector space model Probabilistic IR Language modeling in IR

Outline

2 Probabilistic IR
Probability theory and statistics
Method
Relevance feedback
Intermezzo: experimental comparison
BM25

Ilya Markov i.markov@uva.nl Information Retrieval 45



Vector space model Probabilistic IR Language modeling in IR

Relevance feedback in probabilistic retrieval

1 Guess initial estimates of pt and ut
2 Rank results by RSV
3 Suppose a user judged V results, where

VR = {d ∈ V : Rdq = 1}
4 If VR is large enough, then reestimate pt and ut

pt =
VRt

VR
, ut =

df (t)− VRt

N − VR

5 Repeat from step 2

Manning et al., “Introduction to Information Retrieval”
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Relevance feedback in probabilistic retrieval

VR is usually small
Use Bayesian estimation via conjugate priors
The distribution of pt and ut is Bernoulli
The conjugate prior is beta
The Bayesian estimate for pt (ut is similar):

p
(t+1)
t =

|VRt |+ κp
(k)
t

|VR|+ κ

Why do we need κ?

Ilya Markov i.markov@uva.nl Information Retrieval 47
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Content-based retrieval methods

run precision at recall: average
0.2 0.5 0.8 precision

tfc.tfc 0.211 0.100 0.026 0.126
probabilistic 0.247 0.185 0.079 0.165
Lnu.ltu 0.365 0.227 0.065 0.229
BM25 0.392 0.242 0.073 0.243
LM 0.428 0.265 0.130 0.277

Table 1: results of ad hoc queries

5.3 Results of relevance weighting

The second experiment takes the relevant documents of each topic (401-450) to estimate relevance
weights, which are used retrospectively to determine optimal performance on the collection. The
same experiment was done by Robertson and Sparck-Jones [23] on the Cranfield collection using the
traditional probabilistic model. The purpose of this experiment is two-fold. Firstly, the experiment
shows how the language model’s relevance weighting method performs compared to relevance
weighting of the traditional probabilistic model and the BM25 formula. Secondly, by comparing
the performance with the experiments presented in the previous section, the experiments show
how much can be gained if the system has perfect knowledge about the distribution of terms over
relevant and non-relevant documents.

run precision at recall: average
0.2 0.5 0.8 precision

probabilistic 0.293 0.208 0.120 0.198
BM25 0.416 0.251 0.085 0.263
LM 0.471 0.283 0.147 0.311

Table 2: results of retrospective relevance weighting

The experiment shows that the language model’s increase in performance is as good as the
increase in performance of the traditional probabilistic model and even better than the performance
increase of the BM25 algorithm. Closer inspection of the runs shows that the three methods
actually decrease the average precision of respectively 4, 18 and 10 out of 50 queries. This is
rather alarming, because a good relevance feedback method should never decrease performance
if the weights are used retrospectively. For the language model, we do have a clue why the
relevance weighting algorithm seems to be suboptimal. As said in section 3.4, the algorithm
optimises the probability that the query is generated from the relevant documents. An optimal
algorithm, however, would optimise the probability of relevance given the query. More research
into relevance feedback algorithms for the language modelling approach to information retrieval
is therefore needed.

5.4 Results of Boolean retrieval

The third experiment uses manually formulated Boolean queries. For this experiment we used the
Boolean queries that were formulated by Schiettecatte [29] for TREC topics 301-350. Wild cards
and multi-term expressions were replaced by Boolean equivalents, using the OR-connector for wild
cards and the AND-connector for multi-term expressions. This experiment tries to answer two
questions. First of all this experiment shows how the language model performs compared to the
P-norm model. Like the experiments reported by Salton et al. [27] binary query weights and tf.idf
document weights were used for the P-norm experiments. Experiments were done both using tfc

10

D. Hiemstra and A. de Vries, “Relating the new language models of information retrieval to the
traditional retrieval models”
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Improvements that don’t add up (baselines)

Over half the baseline scores
are below the median score
(TREC systems in 1999)
Only four baselines are in
the top quartile
Only one baseline is close to
the best of the original
TREC 1999 submissions
The mean baseline score
prior to 2005 is 0.260; from
2005 onwards it is 0.245

(a) TREC-8 Ad-Hoc (n = 32) (b) TREC-7 Ad-Hoc (n = 38)

(c) TREC-8 Small Web (n = 21) (d) TREC-2003 Web (Topic Distillation) (n = 8)

Figure 4: Published MAP scores for four different TREC environments, as reported in papers in the SIGIR and CIKM Proceedings. The
connections show comparable before-after pairs, that is, the baseline (offset to the left) and improved scores reported in a published paper.
Best overall and title-only, upper quartile, and median automatic runsets are marked. The guideline for the best original TREC-8 Small Web
title-only run is a lower bound, since not all submissions indicate the topic part used.

of the original 1998 TREC automatic systems, and most of the
improved scores are inferior to the original 1998 system that de-
limited the top quartile. Only three title-only systems beat the
best automatic TREC title-only system, and only two systems beat
the best overall automatic TREC system. Results for the TREC-3
and TREC-6 Ad-Hoc collections, and for the similar TREC-2003,
TREC-2004, and TREC-2005 Robust collections can be found in
Figure 8. They show the same typical pattern: weak baselines, few
improved scores that outperform the best TREC systems, and little
indication of an upward trend over time.
The only scores that exceed the best automatic TREC system

are the TREC-6, TREC-7, TREC-2004 Robust, and TREC-2005
Robust results reported in Liu et al. [2005] and Zhang et al. [2007],
and a TREC-4 score reported in Mitra et al. [1998].
Figure 4(c) shows results for the TREC-8 Small Web collection;

results for the TREC-9 and TREC-2001 web collections, individ-
ually and combined, can be found in Figure 8. The results on
these ad-hoc style web collections differ from those on the Ad-Hoc
proper and Robust collections mainly in having stronger baselines,
with almost all baseline scores being above the median for the orig-

inal TREC runs, and several being in the top quartile. There are
also more reported systems that outperform the best original auto-
matic TREC system. There is, however, still no long-term upward
trend. The combination of initial improvement with subsequent
stagnation suggests that the most fertile development period for a
retrieval problem may be shortly after that problem is proposed.

The only collection with MAP results that regularly better the
original TREC submissions and demonstrate an upward trend in
performance is that of the Topic Distillation task of the TREC-2003
Web track, with seven results pairs from seven papers, shown in
Figure 4(d). Here, six improved scores beat the best TREC system,
as do two baselines. There also appears to be an upward trend
in performance of both baselines and improved scores over time,
albeit on a small sample. This trend may be due to the relative
newness of the Topic Distillation task, in its second year at TREC-
2003. Again, newer tasks may inspire greater progress.

Results for P@10 are in all cases similar to those seen for MAP,
and are not shown – partly for space reasons, partly because P@10
was reported less frequently than MAP, and partly because P@10 is
in general regarded as being a less reliable metric than MAP. Less
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Improvements that don’t add up (improvements)

The improved scores do not
trend upwards over time
Only five of the 30 improved
scores are in the top quartile
Only two title-only systems
beat the best automatic
TREC 1999 title-only system
No system beats the best
automatic TREC 1999
system across all query types

(a) TREC-8 Ad-Hoc (n = 32) (b) TREC-7 Ad-Hoc (n = 38)

(c) TREC-8 Small Web (n = 21) (d) TREC-2003 Web (Topic Distillation) (n = 8)

Figure 4: Published MAP scores for four different TREC environments, as reported in papers in the SIGIR and CIKM Proceedings. The
connections show comparable before-after pairs, that is, the baseline (offset to the left) and improved scores reported in a published paper.
Best overall and title-only, upper quartile, and median automatic runsets are marked. The guideline for the best original TREC-8 Small Web
title-only run is a lower bound, since not all submissions indicate the topic part used.
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and a TREC-4 score reported in Mitra et al. [1998].
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results for the TREC-9 and TREC-2001 web collections, individ-
ually and combined, can be found in Figure 8. The results on
these ad-hoc style web collections differ from those on the Ad-Hoc
proper and Robust collections mainly in having stronger baselines,
with almost all baseline scores being above the median for the orig-

inal TREC runs, and several being in the top quartile. There are
also more reported systems that outperform the best original auto-
matic TREC system. There is, however, still no long-term upward
trend. The combination of initial improvement with subsequent
stagnation suggests that the most fertile development period for a
retrieval problem may be shortly after that problem is proposed.

The only collection with MAP results that regularly better the
original TREC submissions and demonstrate an upward trend in
performance is that of the Topic Distillation task of the TREC-2003
Web track, with seven results pairs from seven papers, shown in
Figure 4(d). Here, six improved scores beat the best TREC system,
as do two baselines. There also appears to be an upward trend
in performance of both baselines and improved scores over time,
albeit on a small sample. This trend may be due to the relative
newness of the Topic Distillation task, in its second year at TREC-
2003. Again, newer tasks may inspire greater progress.

Results for P@10 are in all cases similar to those seen for MAP,
and are not shown – partly for space reasons, partly because P@10
was reported less frequently than MAP, and partly because P@10 is
in general regarded as being a less reliable metric than MAP. Less
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Additivity of improvements

Toggle Enabled Disabled
Term Smoothing Dirichlet Prior [Zhai and Lafferty, 2004]. Jelinek-Mercer.

Ordered Phrases Ordered proximity windows, with a maximum of 4 terms between each
occurence, scored for every sequence of 2 or 3 terms in the original query
[Metzler and Croft, 2005]. Tuning resulted in a weighting of 0.1/1.0.

No ordered proximity.

Unordered Proximity Unordered proximity windows, with a maximum size of four times the number
of terms being scored, for every sequence of two or three terms in the original
query [Metzler and Croft, 2005] (This diverges slightly from the original
method. described in the paper, but the number of possible combinations grows
exponentially with query length). Tuning resulted in a weighting of 0.1/1.0.

No unordered proximity.

Query Expansion Pseudo relevance feedback, using Indri’s adapted version of relevance
modelling [Lavrenko and Croft, 2001] with a total of twenty terms selected
from ten documents, weighting the original query as 0.3 and the expanded
query 0.7.

No query expansion.

Stemming Porter Stemming. No stemming.

Stopping Stopping using the standard list of 417 stopwords included in Indri. No stopping.

Table 2: Indri options toggled for additivity experiment. The configuration with all toggles on was very similar to the run indri05AdmfS
at the TREC-2005 Terabyte track, which achieved the top MAP score for a title-only runset (although the difference with several other top
runsets was not statistically significant at α = 0.05) [Clarke et al., 2005, Metzler et al., 2005].

0 1 2 3 4 5 6

0.13

0.14

0.15

0.16

0.17

Number of options turned on

M
A

P

Figure 5: MAP as a function of number of options turned on, for
Indri running against the TREC-5 Ad-Hoc test collection.

fied that offered some improvement in performance. These options
are described in Table 2. Under our model, each option represents
a technique, with one setting of the option representing the absence
of the technique, the other its presence. The test collection used
was the TREC-5 Ad-Hoc collection. Each of the 26 = 64 differ-
ent combinations of techniques (options) was run against the col-
lection, and the resulting runsets scored using MAP. (Experiments
were also run with Indri and the same six options against the TREC-
2001 Web collection, and with Terrier 2.2 and five options on the
TREC-5 Ad-Hoc collection. In both cases, the results were similar
overall to those reported here, although which option showed what
degree of benefit did vary.)
Figure 5 plots the MAP scores achieved by the different Indri

configurations in the TREC-5 Ad-Hoc environment, as a function
of the number of options turned on. There is a positive relationship
between the number of options turned on and the retrieval effec-
tiveness achieved, suggesting that, here at least, options are broadly
additive. Additionally, there is no obvious tendency for adding op-
tions to have a weaker effect when more options are set (say, going
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Figure 6: Improvement in mean average precision from turning
an option on, for Indri running against the TREC-5 Ad-Hoc test
collection. Each point represents the delta in MAP between the
specified feature being turned on and being turned off, with the
settings of all other features being held the same. Improvements
that achieve significance in a paired, two-tailed, two-sample t test
(α = 0.05) are offset to the right. Every combination of features is
considered.

from four options to five options) than when fewer are set (say, go-
ing from one option to two options).

Figure 6 gives a different viewpoint of the same experiment.
Here, we show the effect of adding a single technique, with ev-
ery other combination of options held fixed. Since for each option
there are 25 = 32 different combinations of the other five options,
for each option we record 32 different MAP deltas resulting from
turning that option from “off” to “on”. The point to notice is the
improvement that an option offers depends upon the combination
of other options that are enabled at the time, and is highly variable.
There are instances where an option creates a significant improve-
ment when added to certain configurations, but has no overall ef-
fect when added to others. So, while improvements are additive
on average, they are not additive always, and additivity needs to
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Term Smoothing Dirichlet Prior [Zhai and Lafferty, 2004]. Jelinek-Mercer.

Ordered Phrases Ordered proximity windows, with a maximum of 4 terms between each
occurence, scored for every sequence of 2 or 3 terms in the original query
[Metzler and Croft, 2005]. Tuning resulted in a weighting of 0.1/1.0.

No ordered proximity.

Unordered Proximity Unordered proximity windows, with a maximum size of four times the number
of terms being scored, for every sequence of two or three terms in the original
query [Metzler and Croft, 2005] (This diverges slightly from the original
method. described in the paper, but the number of possible combinations grows
exponentially with query length). Tuning resulted in a weighting of 0.1/1.0.

No unordered proximity.

Query Expansion Pseudo relevance feedback, using Indri’s adapted version of relevance
modelling [Lavrenko and Croft, 2001] with a total of twenty terms selected
from ten documents, weighting the original query as 0.3 and the expanded
query 0.7.

No query expansion.

Stemming Porter Stemming. No stemming.

Stopping Stopping using the standard list of 417 stopwords included in Indri. No stopping.

Table 2: Indri options toggled for additivity experiment. The configuration with all toggles on was very similar to the run indri05AdmfS
at the TREC-2005 Terabyte track, which achieved the top MAP score for a title-only runset (although the difference with several other top
runsets was not statistically significant at α = 0.05) [Clarke et al., 2005, Metzler et al., 2005].
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fied that offered some improvement in performance. These options
are described in Table 2. Under our model, each option represents
a technique, with one setting of the option representing the absence
of the technique, the other its presence. The test collection used
was the TREC-5 Ad-Hoc collection. Each of the 26 = 64 differ-
ent combinations of techniques (options) was run against the col-
lection, and the resulting runsets scored using MAP. (Experiments
were also run with Indri and the same six options against the TREC-
2001 Web collection, and with Terrier 2.2 and five options on the
TREC-5 Ad-Hoc collection. In both cases, the results were similar
overall to those reported here, although which option showed what
degree of benefit did vary.)
Figure 5 plots the MAP scores achieved by the different Indri

configurations in the TREC-5 Ad-Hoc environment, as a function
of the number of options turned on. There is a positive relationship
between the number of options turned on and the retrieval effec-
tiveness achieved, suggesting that, here at least, options are broadly
additive. Additionally, there is no obvious tendency for adding op-
tions to have a weaker effect when more options are set (say, going
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Figure 6: Improvement in mean average precision from turning
an option on, for Indri running against the TREC-5 Ad-Hoc test
collection. Each point represents the delta in MAP between the
specified feature being turned on and being turned off, with the
settings of all other features being held the same. Improvements
that achieve significance in a paired, two-tailed, two-sample t test
(α = 0.05) are offset to the right. Every combination of features is
considered.

from four options to five options) than when fewer are set (say, go-
ing from one option to two options).

Figure 6 gives a different viewpoint of the same experiment.
Here, we show the effect of adding a single technique, with ev-
ery other combination of options held fixed. Since for each option
there are 25 = 32 different combinations of the other five options,
for each option we record 32 different MAP deltas resulting from
turning that option from “off” to “on”. The point to notice is the
improvement that an option offers depends upon the combination
of other options that are enabled at the time, and is highly variable.
There are instances where an option creates a significant improve-
ment when added to certain configurations, but has no overall ef-
fect when added to others. So, while improvements are additive
on average, they are not additive always, and additivity needs to
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There is a positive relationship between the number of options
turned on and the retrieval effectiveness achieved
Options are broadly additive
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Term Smoothing Dirichlet Prior [Zhai and Lafferty, 2004]. Jelinek-Mercer.

Ordered Phrases Ordered proximity windows, with a maximum of 4 terms between each
occurence, scored for every sequence of 2 or 3 terms in the original query
[Metzler and Croft, 2005]. Tuning resulted in a weighting of 0.1/1.0.

No ordered proximity.

Unordered Proximity Unordered proximity windows, with a maximum size of four times the number
of terms being scored, for every sequence of two or three terms in the original
query [Metzler and Croft, 2005] (This diverges slightly from the original
method. described in the paper, but the number of possible combinations grows
exponentially with query length). Tuning resulted in a weighting of 0.1/1.0.

No unordered proximity.

Query Expansion Pseudo relevance feedback, using Indri’s adapted version of relevance
modelling [Lavrenko and Croft, 2001] with a total of twenty terms selected
from ten documents, weighting the original query as 0.3 and the expanded
query 0.7.

No query expansion.

Stemming Porter Stemming. No stemming.

Stopping Stopping using the standard list of 417 stopwords included in Indri. No stopping.

Table 2: Indri options toggled for additivity experiment. The configuration with all toggles on was very similar to the run indri05AdmfS
at the TREC-2005 Terabyte track, which achieved the top MAP score for a title-only runset (although the difference with several other top
runsets was not statistically significant at α = 0.05) [Clarke et al., 2005, Metzler et al., 2005].
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fied that offered some improvement in performance. These options
are described in Table 2. Under our model, each option represents
a technique, with one setting of the option representing the absence
of the technique, the other its presence. The test collection used
was the TREC-5 Ad-Hoc collection. Each of the 26 = 64 differ-
ent combinations of techniques (options) was run against the col-
lection, and the resulting runsets scored using MAP. (Experiments
were also run with Indri and the same six options against the TREC-
2001 Web collection, and with Terrier 2.2 and five options on the
TREC-5 Ad-Hoc collection. In both cases, the results were similar
overall to those reported here, although which option showed what
degree of benefit did vary.)
Figure 5 plots the MAP scores achieved by the different Indri

configurations in the TREC-5 Ad-Hoc environment, as a function
of the number of options turned on. There is a positive relationship
between the number of options turned on and the retrieval effec-
tiveness achieved, suggesting that, here at least, options are broadly
additive. Additionally, there is no obvious tendency for adding op-
tions to have a weaker effect when more options are set (say, going
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Figure 6: Improvement in mean average precision from turning
an option on, for Indri running against the TREC-5 Ad-Hoc test
collection. Each point represents the delta in MAP between the
specified feature being turned on and being turned off, with the
settings of all other features being held the same. Improvements
that achieve significance in a paired, two-tailed, two-sample t test
(α = 0.05) are offset to the right. Every combination of features is
considered.

from four options to five options) than when fewer are set (say, go-
ing from one option to two options).

Figure 6 gives a different viewpoint of the same experiment.
Here, we show the effect of adding a single technique, with ev-
ery other combination of options held fixed. Since for each option
there are 25 = 32 different combinations of the other five options,
for each option we record 32 different MAP deltas resulting from
turning that option from “off” to “on”. The point to notice is the
improvement that an option offers depends upon the combination
of other options that are enabled at the time, and is highly variable.
There are instances where an option creates a significant improve-
ment when added to certain configurations, but has no overall ef-
fect when added to others. So, while improvements are additive
on average, they are not additive always, and additivity needs to
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The improvement, that an option offers, depends upon the
combination of other options
The improvements are highly variable

T. Armstrong et al., “Improvements That Don’t Add Up: Ad-Hoc Retrieval Results Since 1998”

Ilya Markov i.markov@uva.nl Information Retrieval 54



Vector space model Probabilistic IR Language modeling in IR

Outline

2 Probabilistic IR
Probability theory and statistics
Method
Relevance feedback
Intermezzo: experimental comparison
BM25

Ilya Markov i.markov@uva.nl Information Retrieval 55



Vector space model Probabilistic IR Language modeling in IR

Probabilistic retrieval revisited

Assumptions
Boolean representation of documents/queries/relevance
Term independence
Out-of-query terms do not affect retrieval
Document relevance values are independent

Similar to VSM
But does not consider the term frequency and document length
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BM25

Start with a simple RSV

RSVd =
∑
t∈q

log
[

N

df (t)

]
Factor in the term frequency and document length

RSVd =
∑
t∈q

log
[

N

df (t)

]
· (k1 + 1) · tf (t, d)
k1 ·

[
(1− b) + b · dl(d)dlave

]
+ tf (t, d)

k1, b – parameters
dl(d) – length of document d
dlave – average document length
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BM25

BM25d =
∑
t∈q

log
[

N

df (t)

]
· (k1 + 1) · tf (t, d)
k1 ·

[
(1− b) + b · dl(d)dlave

]
+ tf (t, d)

What if k1 ∈ {0, 1,∞}?
What of b ∈ {0, 1}?
What if tf (t, d) is small/large? k1 ∈ [1.2, 2], b = 0.75.
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BM25 for long queries

BM25d =
∑
t∈q

log
[

N

df (t)

]
· (k1 + 1) · tf (t, d)
k1 ·

[
(1− b) + b · dl(d)dlave

]
+ tf (t, d)

· (k3 + 1)tf (t, q)
k3 + tf (t, q)
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Relevance feedback for BM25

BM25d =
∑
t∈q

log
[

N

df (t)

]
· (k1 + 1) · tf (t, d)
k1 ·

[
(1− b) + b · dl(d)dlave

]
+ tf (t, d)

Use log odds instead

ct = log
pt(1− ut)

ut(1− pt)

Estimate pt and ut through relevance feedback

pt =
VRt

VR
, ut =

df (t)− VRt

N − VR

Plug pt and ut into ct and then ct into BM25d

ct = log
|VRt |/|VNRt |

[df (t)− |VRt |]/[(N − |VR|)− (df (t)− |VRt |)]
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Smoothing
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Language model

A statistical language model is a probability distribution over
sequences of words.

Given a sequence of length m

A language model assigns probability P(w1, . . . ,wm) to this
sequence
Unigram language model

P(w1, . . . ,wm) = P(w1) . . .P(wm)

Bi-gram language model

P(w1, . . . ,wm) = P(w1)P(w2 | w1)P(w3 | w2) . . .P(wm | wm−1)

https://en.wikipedia.org/wiki/Language_model
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Unigram language model example

Online edition (c)�2009 Cambridge UP

12.1 Language models 239

Model M1 Model M2
the 0.2 the 0.15
a 0.1 a 0.12
frog 0.01 frog 0.0002
toad 0.01 toad 0.0001
said 0.03 said 0.03
likes 0.02 likes 0.04
that 0.04 that 0.04
dog 0.005 dog 0.01
cat 0.003 cat 0.015
monkey 0.001 monkey 0.002
. . . . . . . . . . . .

! Figure 12.3 Partial specification of two unigram language models.

✎ Example 12.1: To find the probability of a word sequence, we just multiply the
probabilities which the model gives to each word in the sequence, together with the
probability of continuing or stopping after producing each word. For example,

P(frog said that toad likes frog) = (0.01× 0.03× 0.04× 0.01× 0.02× 0.01)(12.2)
×(0.8× 0.8× 0.8× 0.8× 0.8× 0.8× 0.2)

≈ 0.000000000001573

As you can see, the probability of a particular string/document, is usually a very
small number! Here we stopped after generating frog the second time. The first line of
numbers are the term emission probabilities, and the second line gives the probabil-
ity of continuing or stopping after generating each word. An explicit stop probability
is needed for a finite automaton to be a well-formed language model according to
Equation (12.1). Nevertheless, most of the time, we will omit to include STOP and
(1− STOP) probabilities (as do most other authors). To compare two models for a
data set, we can calculate their likelihood ratio, which results from simply dividing theLIKELIHOOD RATIO
probability of the data according to one model by the probability of the data accord-
ing to the other model. Providing that the stop probability is fixed, its inclusion will
not alter the likelihood ratio that results from comparing the likelihood of two lan-
guage models generating a string. Hence, it will not alter the ranking of documents.2
Nevertheless, formally, the numbers will no longer truly be probabilities, but only
proportional to probabilities. See Exercise 12.4.

✎ Example 12.2: Suppose, now, that we have two language models M1 and M2,
shown partially in Figure 12.3. Each gives a probability estimate to a sequence of

2. In the IR context that we are leading up to, taking the stop probability to be fixed across
models seems reasonable. This is because we are generating queries, and the length distribution
of queries is fixed and independent of the document from which we are generating the language
model.

Manning et al., “Introduction to Information Retrieval”
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Query likelihood model

Rank documents by their likelihood given a query

P(d | q) = P(q | d)P(d)
P(q)

The prior distribution over queries P(q) does not affect the
ranking for a particular query

P(d | q) rank
= P(q | d)P(d)

Usually, the prior distribution over documents P(d) is assumed
to be uniform

P(d | q) rank
= P(q | d)

P(q | d) = P(q | Md) is the probability that the query q
is generated by the document language model Md
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Estimating query likelihood

“Bag of words” assumption: terms are independent

P(q | Md) =
∏
t∈q

P(t | Md)

Unigram language model

P(t | Md) =
tf (t, d)

dl(d)

If some query terms do not appear in document d ,
then P(q | Md) = 0
This is addressed by smoothing (discussed later)
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Outline

3 Language modeling in IR
Method
Relevance feedback
Smoothing
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Relevance model

Assume there is an oracle language model Mr , called the
relevance model
Kullback-Leibler divergence between Mr and Md

KL(Mr‖Md) =
∑
t∈V

P(t | Mr ) log
P(t | Mr )

P(t | Md)

=
∑
t∈V

[P(t | Mr ) logP(t | Mr )− P(t | Mr ) logP(t | Md)]

rank
= −

∑
t∈V

P(t | Mr ) logP(t | Md)
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Estimating relevance model

If we assume that the relevance model Mr is the query
language model Mq, then

P(t | Mr ) =
tf (t, q)

|q|

The out-of-query terms do not contribute to the KL score
If we assume that query terms are sampled from the relevance
model Mr , then

P(t | Mr ) ≈ P(t | q1, . . . , qn)
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Estimating relevance model (cont’d)

P(t | Mr ) ≈ P(t | q1, . . . , qn)

=
P(t, q1, . . . , qn)

P(q1, . . . , qn)
rank
=
∑
d∈C

P(t, q1, . . . , qn | d)P(d)

=
∑
d∈C

P(d)P(t | Md)
n∏

i=1

P(qi | Md)

rank
=
∑
d∈C

wd · P(t | Md), where

wd =
n∏

i=1

P(qi | Md)

P(t | Mr ) is the weighted average of P(t | Md) in a set of documents C,
where weights are the query likelihood scores

∏n
i=1 P(qi | Md).
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Relevance feedback

1 Rank results using the query likelihood score P(q | d)
2 Obtain a set of relevant results C through (pseudo-)relevance

feedback
3 Calculate the relevance model P(t | Mr )

P(t | Mr ) =
∑
d∈C

wd · P(t | Md)

wd =
n∏

i=1

P(qi | Md)

4 Rerank results using the negative KL-divergence score
(or negative cross entropy)∑

t∈V
P(t | Mr ) logP(t | Md)
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Outline

3 Language modeling in IR
Method
Relevance feedback
Smoothing
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Jelinek-Mercer smoothing

Ps(t | Md) = λP(t | Md) + (1− λ)P(t | Mc)

= λ
tf (t, d)

dl(d)
+ (1− λ)cf (t)

cl

cf (t) – collection frequency of term t

cl – collection length
Smoothed query likelihood

Ps(q | Md) =
n∏

i=1

[
λ
tf (qi , d)

dl(d)
+ (1− λ)cf (qi )

cl

]
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Relationship to TF-IDF

logPs(q | Md) =
n∑

i=1

log
[
λ
tf (qi , d)

dl(d)
+ (1− λ)cf (qi )

cl

]
=

∑
i :tf (qi ,d)>0

log
[
λ
tf (qi , d)

dl(d)
+ (1− λ)cf (qi )

cl

]

+
∑

i :tf (qi ,d)=0

log(1− λ)cf (qi )
cl

rank
=

∑
i :tf (qi ,d)>0

log
λ tf (qi ,d)

dl(d) + (1− λ) cf (qi )cl

(1− λ) cf (qi )cl

=
∑

i :tf (qi ,d)>0

log

 λ tf (qi ,d)
dl(d)

(1− λ) cf (qi )cl

+ 1


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Dirichlet smoothing

A unigram language model can be seen as a multinomial
distribution over words Ld(n1, . . . , nk | p1, . . . , pk)

ni = tf (ti , d)
pi = P(ti | Md)

The conjugate prior for multinomial is
the Dirichlet distribution Pprior (p1, . . . , pk ;α

pr
1 , . . . , α

pr
k )

αpr
i = µP(ti | Mc)
µ is a smoothing parameter (λ = dl

dl+µ )

The posterior is the Dirichlet distribution with parameters
αpo
i = ni + αpr

i = tf (ti , d) + µP(ti | Mc)

Dirichlet smoothing

Ps(t | Md) =
tf (ti , d) + µP(ti | Mc)

dl(d) + µ
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Chinese restaurant process

1 Start with an empty restaurant
2 The 1st customer sits at the 1st table and chooses dish x from

the restaurant’s menu with probability P(x | menu)
3 The n + 1th customer has two options

a) Sit at the 1st unoccupied table with probability µ
n+µ and choose

dish x from the menu
b) Sit at any of the occupied tables with probability nt

n+µ and eat
the same dish xt as others at that table

P(customer n + 1 eats dish x) =

∑
t:x nt + µP(x | menu)

n + µ
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Dirichlet smoothing as Chinese restaurant process

CRP IR

dish word
restaurant document
menu collection
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Experimental comparison

Table 2: Topic Finding Task, Queries 401–450, TREC-8 Newswire. The highest score for each collec-
tion/measurement pair is shown in bold.

Collection Method Parameter MAP R-Prec. Prec@10

Trec8 T Okapi
BM25

Okapi 0.2292 0.2820 0.4380

JM λ = 0.7 0.2310
(p=0.8181)

0.2889
(p=0.3495)

0.4220
(p=0.3824)

Dir µ = 2, 000 0.2470
(p=0.0757)

0.2911
(p=0.3739)

0.4560
(p=0.3710)

Dis δ = 0.7 0.2384
(p=0.0686)

0.2935
(p=0.0776)

0.4440
(p=0.6727)

Two-Stage auto 0.2406
(p=0.0650)

0.2953
(p=0.0369)

0.4260
(p=0.4282)

Trec8 TD Okapi
BM25

Okapi 0.2528 0.2908 0.4640

JM λ = 0.7 0.2582
(p=0.5226)

0.3038
(p=0.1886)

0.4600
(p=0.8372)

Dir µ = 2, 000 0.2621
(p=0.3308)

0.3043
(p=0.1587)

0.4460
(p=0.3034)

Dis δ = 0.7 0.2599
(p=0.1737)

0.3105
(p=0.0203)

0.4880
(p=0.1534)

Two-Stage auto 0.2445
(p=0.2455)

0.2933
(p=0.7698)

0.4400
(p=0.1351)

Trec8 TDN Okapi
BM25

Okapi 0.2454 0.3012 0.4560

JM λ = 0.7 0.2608
(p=0.0379)

0.3090
(p=0.3733)

0.4880
(p=0.1725)

Dir µ = 2, 000 0.2597
(p=0.1334)

0.3026
(p=0.8805)

0.4660
(p=0.4616)

Dis δ = 0.7 0.2459
(p=0.9540)

0.2983
(p=0.7660)

0.4920
(p=0.1723)

Two-Stage auto 0.2093
(p=0.0004)

0.2631
(p=0.0018)

0.4520
(p=0.8875)

In our result tables, the highest scores for each
collection/measurement pair are shown in bold font.
The p-values for a paired t-test are shown beneath the
Mean Average Precision, R-Precision, Precision@10
and Mean Reciprocal Rank scores in the tables. In
the discussion of results, where a p-value is less than
0.05, we take this as an indication of statistical sig-
nificance. However, reporting actual p-values allows
for the adjustment of the significance threshold.

4.1 Topic Finding

Topic finding is the classic ad hoc search task. In re-
sponse to the user’s query, the IR system searches a
collection of indexed documents, and returns an or-
dered list of answer resources. The more effective the
IR system’s search algorithm is, the better the quality
of the ranked list of retrieved results.

Newswire Data: Table 2 shows the results for
queries 401–450 on the TREC-8 newswire data. For
the newswire collection, language models perform
well. However, there is variation between the smooth-
ing approaches: each scores highest on at least one of
the three metrics for a variant of the topic.

Based on MAP scores, the ordering of methods for
the newswire collection is as follows:

• T (title-only): Dirichlet > Two − Stage >
AbsDiscounting > Okapi > Jelinek − Mercer

• TDN (all topic fields): Jelinek − Mercer >
Dirichlet > AbsDiscounting = Okapi > Two −
Stage

The mean average precision score for Jelinek-
Mercer using longer versions of queries is significantly
better than Okapi BM25 (paired t-test, p < 0.05).

Web Data (WT10g): Table 3 shows the results
for queries 451–500 for the TREC-9 ad hoc search
on the WT10g Web data. The results on the same
collection using TREC-10 (2001) queries 501–550 are
given in Table 4.

Only Dirichlet consistently outperforms the Okapi
BM25 baseline on the Web data. The difference
between mean average precision scores for Dirichlet
and Okapi BM25 is statistically significant for title-
only queries (paired t-test, p < 0.05), and Dirichlet
smoothing is numerically superior for longer queries.

Using MAP scores, an ordering of methods for the
Web data collections and queries is:

• T (title-only): Dirichlet > Okapi = Two −
Stage > AbsDiscounting > Jelinek − Mercer

• TDN (all topic fields): Dirichlet > Okapi >
AbsDiscounting > Jelinek − Mercer > Two −
Stage

Overall, for the topic finding task, we find that
Dirichlet smoothing consistently performs better than
Okapi BM25 on both newswire and Web data. While
Jelinek-Mercer performs well on the smaller newswire
collection, particularly for longer queries for which
our parameter choice is close to optimal, this finding
does not hold for the Web data. Two-stage smooth-
ing performs well for title-only queries, but its perfor-
mance deteriorates as the query becomes more ver-
bose.

Regarding query length, both Okapi BM25 and the
language model approaches performed better with the
longer, verbose versions of the topics than with the
title field only.

Because Jelinek-Mercer smoothing does not per-
form as well as expected for longer queries on the Web
data, and since the optimal value of λ for Jelinek-
Mercer smoothing is dependent on the collection and
query set, we conducted separate sensitivity tests us-
ing the TREC-9 Web data. However, the results of
these (not reported here for space reasons) suggest

Figure: TREC-8 Newswire, ad-hoc track, queries 401–450, title-only
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Experimental comparison

Table 4: Topic Finding Task, Queries 501–550, TREC-2001 Web data.

Collection Method Parameter MAP R-Prec. Prec@10

TREC-
2001 T

Okapi
BM25

Okapi 0.1522 0.2056 0.2918

JM λ = 0.7 0.1113
(p=0.0003)

0.1505
(p=0.0037)

0.2122
(p=0.0003)

Dir µ = 2, 000 0.1774
(p=0.0307)

0.2238
(p=0.3236)

0.3184
(p=0.3165)

Dis δ = 0.7 0.1370
(p=0.0511)

0.1906
(p=0.053)

0.2653
(p=0.1348)

Two-Stage auto 0.1441
(p=0.2963)

0.1934
(p=0.3992)

0.2898
(p=0.8962)

TREC-
2001 TD

Okapi
BM25

Okapi 0.1786 0.2234 0.3520

JM λ = 0.7 0.1425
(p=0.0004)

0.1855
(p=0.0054)

0.2920
(p=0.0003)

Dir µ = 2, 000 0.1984
(p=0.1150)

0.2385
(p=0.4409)

0.3760
(p=0.2857)

Dis δ = 0.7 0.1653
(p=0.2528)

0.2072
(p=0.3014)

0.3480
(p=0.8024)

Two-Stage auto 0.1542
(p=0.0716)

0.2014
(p=0.1753)

0.3360
(p=0.4293)

TREC-
2001 TDN

Okapi
BM25

Okapi 0.1942 0.2356 0.3860

JM λ = 0.7 0.1657
(p=0.0025)

0.2085
(p=0.0523)

0.3140
(p=0.0011)

Dir µ = 2, 000 0.2051
(p=0.1868)

0.2400
(p=0.6025)

0.3500
(p=0.0685)

Dis δ = 0.7 0.1774
(p=0.0403)

0.2300
(p=0.4898)

0.3540
(p=0.0167)

Two-Stage auto 0.1505
(p=0.0003)

0.2024
(p=0.0011)

0.3220
(p=0.0028)

Table 5: Named-Page Finding Task, Queries NP1–145, TREC 2001 Data.

Collection Method Parameter Mean Recipro-
cal Rank

Success@10

WT10G Okapi BM25 Okapi 0.2947 0.517
JM λ = 0.7 0.2237

(p=0.0025)
0.400

Dir µ = 2, 000 0.1642
(p<0.0001)

0.297

Dis δ = 0.7 0.2808
(p=0.4689)

0.476

Two-Stage auto 0.2734
(p=0.0912)

0.503

obesity/, which is an authoritative page on the topic.
The page is judged the correct answer as it introduces
the topic and links to other useful and relevant re-
sources. The page above is also an entry page at the
most appropriate level in the Surgeon General web-
site’s hierarchy.

Topic distillation as a search task is different to
ad hoc topical searches. For ad hoc search, the user
wants the most topically relevant documents returned
to them. For topic distillation, the system should
return to the user a Web page that is an entry page
to other high-quality resources on the topic.

We show results for queries 551–600, which were
part of the TREC-2002 Topic Distillation task, in Ta-
ble 7. It can be seen that Jelinek-Mercer and ab-
solute discounting smoothing approaches work well
for longer versions of the topics. For queries formed
from joining the ‘title’ and ‘description’ fields of each
topic, absolute discounting produces the best results,
but the difference is not statistically significant (p >
0.05). For title-only queries, two-stage smoothing
performs best, but not significantly better than Okapi
BM25 (p > 0.05).

Using MAP, which Craswell and Hawking [2004]
indicate as an appropriate measure for the topic dis-
tillation task, the ordering of methods for topic dis-
tillation is:

• T (title-only): Two − Stage = Okapi >
AbsDiscounting > Dirichlet > Jelinek −
Mercer

• TDN (all topic fields): Jelinek − Mercer =
AbsDiscounting > Okapi > Two − Stage >
Dirichlet

Our results indicate that absolute discounting and
Jelinek-Mercer smoothing (with optimal parameters)
can outperform the strong Okapi BM25 baseline for
longer queries. Jelinek-Mercer smoothing performs
poorly for short queries; using a smaller value for
λ improves retrieval accuracy, but the revised ap-
proach does not improve significantly on Okapi BM25.
Dirichlet smoothing, which was the strongest overall
performer for topic finding search, performed badly
at named-page finding and topic distillation tasks.

An overall trend is that the Okapi BM25 function
performs best with shorter queries for topic distilla-
tion requests. This finding is not repeated in our re-
sults for topic finding search, however.

It may be possible that the longer topic descrip-
tions contain a lot of ‘noise’ words, the presence of
which degrade precision for Okapi BM25. The lan-
guage modelling approaches appear to handle the
verbosity of the queries more effectively than Okapi-
BM25 as the form of request gets longer. This is one

Figure: TREC-2001 Web data, ad-hoc track, queries 501–550, title-only
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Language modeling for IR summary

Query likelihood model
Relevance feedback
Smoothing

Jelinek-Mercer smoothing
Dirichlet smoothing
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Content-based retrieval summary

Vector space model
Documents and queries as vectors
Rank documents using cosine similarity
TF-IDF weights

Probabilistic IR
Probability ranking principle
Binary independence model
Rank documents using odds or retrieval status value
BM25

Language modeling in IR
Query likelihood model
Jelinek-Mercer and Dirichlet smoothing

Relevance feedback
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Materials

Manning et al., Chapters 6, 9, 11, 12
Croft et al., Chapter 7
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Ranking methods

1 Content-based
Term-based
Semantic

2 Link-based (web search)
3 Learning to rank
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