1 ИДЗ-2

1.1 Алферов

- 1. Доказать, что для любого простого p>3 найдется натуральное n такое, что: n и n+1 квадратичные вычеты по модулю p.
- 2. Найти символ Якоби $(\frac{470}{991})$.
- 3. Найти остаток от деления $37^{7^{37}}$ на 66.
- 4. Найти многочлен p не выше 4-й степени, удовлетворяющий условиям:

$$p(-3) = 7$$
; $p(-1) = -7$; $p(1) = 3$; $p(2) = 17$; $p(-2) = -15$.

1.2 Василенко

- 1. Доказать, что для любого простого p>3 найдется натуральное n такое, что: n и n+1 квадратичные невычеты по модулю p.
- 2. Найти символ Якоби $(\frac{470}{911})$.
- 3. Найти остаток от деления $17^{11^{43}}$ на 62.
- 4. Найти многочлен p не выше 4-й степени, удовлетворяющий условиям:

$$p(-2) = -5$$
; $p(1) = 1$; $p(-3) = 5$; $p(2) = 15$; $p(-1) = 3$.

1.3 Карлина

- 1. Описать все простые p такие, что 3 квадратичный вычет по модулю p.
- 2. Найти символ Якоби $(\frac{430}{947})$.
- 3. Найти остаток от деления $13^{5^{53}}$ на 48.
- 4. Найти многочлен p не выше 4-й степени, удовлетворяющий условиям:

$$p(-2) = 19$$
; $p(3) = 9$; $p(2) = -13$; $p(-1) = 5$; $p(1) = -5$.

1.4 Киракосян

- 1. Описать все простые p такие, что 5 квадратичный вычет по модулю p.
- 2. Найти символ Якоби $\left(\frac{410}{967}\right)$.
- 3. Найти остаток от деления $31^{41^{101}}$ на 53.
- 4. Найти многочлен p не выше 4-й степени, удовлетворяющий условиям:

1

$$p(-1) = 8$$
; $p(3) = 16$; $p(-2) = 11$; $p(1) = -4$; $p(2) = -5$.

1.5 Кириленко

- 1. Описать все простые p такие, что -3 квадратичный вычет по модулю p.
- 2. Найти символ Якоби $(\frac{510}{967})$.
- 3. Найти остаток от $38^{21^{183}}$ деления на 59.
- 4. Найти многочлен p не выше 4-й степени, удовлетворяющий условиям:

$$p(2) = 11; p(-1) = -11; p(-2) = -7; p(3) = 13; p(1) = -7.$$

1.6 Лупуляк

- 1. Описать все простые p такие, что -2 квадратичный вычет по модулю p.
- 2. Найти символ Якоби $(\frac{470}{983})$.
- 3. Найти остаток от деления $17^{11^{37}}$ на 62.
- 4. Найти многочлен p не выше 4-й степени, удовлетворяющий условиям:

$$p(-3) = -9$$
; $p(1) = -1$; $p(-1) = -1$; $p(-2) = 5$; $p(2) = -19$.

1.7 Смирдин

- 1. Описать все простые p такие, что -7 квадратичный вычет по модулю p.
- 2. Найти символ Якоби $(\frac{470}{907})$.
- 3. Найти остаток от деления $24^{9^{101}}$ на 55.
- 4. Найти многочлен p не выше 4-й степени, удовлетворяющий условиям:

$$p(-2) = 19$$
; $p(2) = -1$; $p(-3) = -1$; $p(1) = 7$; $p(-1) = 11$.

1.8 Tyx

- 1. Описать все простые p такие, что 12- квадратичный вычет по модулю p.
- 2. Найти символ Якоби $(\frac{430}{919})$.
- 3. Найти остаток от деления $4^{3^{51}}$ на 33.
- 4. Найти многочлен p не выше 4-й степени, удовлетворяющий условиям:

$$p(-2) = 18$$
; $p(-1) = 9$; $p(-3) = 7$; $p(2) = -18$; $p(1) = 3$.

1.9 Фарутин

- 1. Описать все простые p такие, что -14 квадратичный вычет по модулю p.
- 2. Найти символ Якоби $\left(\frac{410}{947}\right)$.
- 3. Найти остаток от деления $35^{11^{53}}$ на 86.
- 4. Найти многочлен p не выше 4-й степени, удовлетворяющий условиям:

$$p(3) = -9$$
; $p(4) = 13$; $p(2) = -3$; $p(-1) = 3$; $p(1) = 1$.

1.10 Шувалова

- 1. Описать все простые p такие, что 10 квадратичный вычет по модулю p.
- 2. Найти символ Якоби $(\frac{510}{947})$.
- 3. Найти остаток от деления $41^{17^{55}}$ на 68.
- 4. Найти многочлен p не выше 4-й степени, удовлетворяющий условиям:

$$p(4) = -1$$
; $p(2) = 17$; $p(1) = -1$; $p(-2) = -19$; $p(-1) = -1$.

1.11 Ютман

- 1. Описать все простые p такие, что -22 квадратичный вычет по модулю p.
- 2. Найти символ Якоби $(\frac{470}{967})$.
- 3. Найти остаток от деления $27^{11^{43}}$ на 34.
- 4. Найти многочлен p не выше 4-й степени, удовлетворяющий условиям:

$$p(1) = -10; p(-1) = -2; p(-2) = 5; p(-4) = -5; p(-3) = 14.$$