ML 25. Является ли перечислимым множество всех программ, вычисляющих сюръективные функции. А его дополнение?

ML 26. Используя теорему Клини доказите, что:

- а) существует алгоритм, который всюду останавливается и выдает 1 на числе, которое является квадратом его номера, а на всех остальных входах выдает ноль;
- б) существуют два различных алгоритма \mathcal{A} и \mathcal{B} , что алгоритм \mathcal{A} печатает $\sharp \mathcal{B}$, а алгоритм \mathcal{B} печатает $\sharp \mathcal{A}$.

Определение 1. Двухместная функция U(n,x) называется универсальной для класса функций \mathfrak{F} , если $U \in \mathfrak{F}$ и для любой одноместной функции $f \in \mathfrak{F}$ найдется такое n, что f(x) = U(n,x).

Пусть U — универсальная функция для класса вычислимых функций. Будем говорить, что U задает нумерацию функций в следующем смысле: $f_n(x) = U(n,x)$. Нумерация, заданная функцией U(n,x) называется главной, если для любой вычислимой функции V(n,x) существует такая вычислимая, всюду определенная функция $s: \mathbb{N} \to \mathbb{N}$, что V(n,x) = U(s(n),x).

ML 27. Покажите, что функция $U(n,x) = \langle n \rangle(x)$ задает главную нумерацию.

[ML 28.] Докажите, что для любой вычислимой функции f в любой главной нумерации (главной универсальной функции) V(n,x) существует бесконечное число номеров n, что для любого x выполнено, что V(n,x) = f(x) (при чем V(n,x) не определенно тогда и только тогда, когда f(x) не определена).

ML 29. Покажите, что существуют универсальная вычислимая функция, которая не является главной.

ML 30. Пусть $H = \{(n,x) \mid < n > (x) \text{ останавливается} \}$. Покажите, что $H \in \Sigma_1$ и любое множество из Σ_1 m-сводится к H.

ML 31. Покажите, что множество номеров алгоритмов, которые не останавливаются ни на одном входе

- а) лежит в классе Π_1 ;
- б) любое другое множество из Π_1 *m*-сводится к этому множеству;
- в) покажите, что это множество не лежит в Σ_1 .

ML 12. Приведите пример числа такого числа $r \in \mathbb{R}$, что множество $\{q \in \mathbb{Q} \mid q \leq r\}$ не является перечислимым.

ML 22. Задача Поста состоит в следующем: есть доминошки n видов $\left[\frac{s_1}{t_1}\right], \ldots, \left[\frac{s_n}{t_n}\right], s_i$ и t_i — конечные строки, есть неограниченный запас доминошек каждого вида, доминошки переворачивать нельзя. Требуется определить, можно ли составить несколько доминошек так, чтобы в верхней и нижней их половине читалась одна и та же строка, такие последовательности доминошек будем называть согласованными. Докажите, что задача Поста алгоритмически неразрешима.