
Reinforcement Learning 

Section 1: The Basics 

1 



A bit about me 

2 



Online Forum 

• Google group for this course:  

 spbau-rl@googlegroups.com 

• Need to request access. 

• Used for: 

– Announcements and posting exercises 

– Q&A 

– Anything else (comments, suggestions, 

etc) 

3 

mailto:spbau-rl@googlegroups.com
mailto:spbau-rl@googlegroups.com
mailto:spbau-rl@googlegroups.com


Why study RL? 

Motivation 

• The psychology/neuroscience 

perspective.  

• The engineering perspective. 

4 



1. The Psychology of RL 

5 



1911: Thorndike 

Thorndike’s puzzle box 

6 

Law of effect: “Of several responses made to the same situation, 

those which are accompanied or closely followed by satisfaction 

to the animal will, other things being equal, be more firmly  

connected with the situation.”  



1927: Pavlov 

Pavlov’s dog 

7 



1948: Skinner 

Skinner Box 

8 

• Positive reinforcement, negative reinforcement, punishment 

• Observation of response and extinction rates. 

• Psychotherapy: token economy, behaviour shaping 



1970s: Dopamine 

9 



Pavlov Revisited 

10 



2. The Engineering of RL 

11 



Reinforcement Learning 

Application Example 1: Breakout 

12 



Reinforcement Learning 

Application Example 1: Breakout 

13 



Reinforcement Learning 

Application Example 2: Helicopter control 

14 



Real-world RL Problems 

Beyond Toy Problems: sequential decision making 

• Industrial plant control 

• Investment portfolio management 

• Robot movement 

• Autonomous car driving 

 

15 



Reinforcement Learning 

Agent Paradigm 

16 



Reinforcement Learning 

Agent Paradigm 

17 



RL vs. Supervised Learning 

What makes RL different?  

• No supervisor feedback: learning from 

reward signal only.  

• Feedback signal is often delayed, not 

instantaneous.  

• Sequential aspect of decision making.  

• Agent is influencing the selection of 

training experience. 

18 



Modelling the Environment 

Markov Decision Process 

19 



Markov Decision Process (MDP) 

Definition 

20 

A (single-agent) MDP is a tuple (S,A,p,R) where: 

 

• S is a set of states  

• A is a set of actions 

• p: S  A  S  [0,1]  specifies the transition 

probabilities between states.  

• R: S  A    specifies the reward for each 

state-action pair.  

 

Note: deterministic transition function : S  A  S 



MDP 

Example 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

100 

100 

0 

21 



Agent State vs. Environment State 

Crucial Distinction 

• Agents have their own representation of the 

environment state.  

• Partial observability: agents may not be able 

to observe everything in the environment. 

• Agent may want to focus in on relevant parts 

of the environment. 

• Ideally: all information necessary to make an 

optimal decision is contained in the agent 

state.  

 
22 



Markov States 

Sufficient Information in States 

23 

Def.: A state St is Markov if and only if:  

           P(St+1|St) = P(St+1|S1, …, St) 

In other words: St contains all relevant information 

to determine the next state.  

Note: any state can be made Markov by 

incorporating the complete history.  



RL Output 

Optimal Policy 

24 

Goal: learn an optimal policy : S  A  

Evaluation of policy via discounted cumulative 

reward:   V(st) = i  0 
i rt+i 

where:  

• 0   < 1  is a discount factor ( = 0 means that 

only immediate reward is considered). 

• rt+i is the reward at time t+i determined by 

performing actions specified by policy  



Optimal Policy 

Definition 

25 

Goal: Agent learns policy  that maximizes V(s) 

for all states s. 

 

Optimal policy * = argmax V
(s)  for all s. 

 

Notation: V*(s) = V*(s) 



State Values 

Example: V* values for =0.9  

90 

90 

100 

81 
100 

0 

26 



Optimal Policy 

Computation 

The optimal action in state s is the action a that maximizes 

the sum of the immediate reward r(s,a) plus the value V* of 

the immediate successor state, discounted by : 

 

*(s) = argmaxa [r(s,a) + V*((s,a))] 

 

If functions r and  are known then the agent can acquire 

* by computing V* (more details later). 

 

 

27 



Optimal Policy 

Example 

90 

90 

100 

81 
100 

0 

28 



Bellman Equation 

Computing V* 

V*(s) := r(s) +  maxa s’T(s,a,s’) V*(s’) 
 

For n states: n equations with n unknowns 

 

But: n equations are non-linear (“max” operator).  
 

29 



Value Iteration 

Algorithm to Compute V* 

1. For all states s: V0(s) := 0 

 

2. t := 0; 

 

3.  Update values of all states s based on successor states:  

 Vt+1(s) := r(s) +  maxa Vt((s,a)) 

 

4.  t := t+1; 

 

5.  Repeat steps 3 and 4 until convergence (or had enough)  

 

 
30 



Model-based vs model-free 

What if  and r are unknown?   

 

Solution 1: Learn  and r from experience (model-based). 

 

Solution 2: Learn quality function Q directly (model-free). 

 

Q(s,a) = r(s,a) + V*((s,a)) 

 

Optimal policy computation:  *(s) = argmaxa Q(s,a) 

 

It is possible to learn Q even if  and r are unknown! 

 

31 



Q Learning 

Algorithm 

• V*(s) = maxa' Q(s,a') 

• Q(s,a) = r(s,a) +  (maxa' Q((s,a),a') 

• How to learn Q? 

• Observe reward and update estimate Q' 

accordingly.  

32 



Q Learning 

Algorithm 

Compute estimate Q’ of Q: 

 

For each state s and action a do { 

       Q'(s,a) = 0; 

} 

Do forever { 

    Select action a and execute it in current state s;  

    r = reward received; 

    s' = new state; 

    Q'(s,a) = (1-) Q'(s,a) +  (r +  maxa' Q'(s',a')) 

    s = s'; 

} 

     

33 



Q Learning 

Example:  = 0.9,  = 1 

73 

66 

81 

100 

34 



Q Learning 

Example (Cont.) 

90 

66 

81 

100 

35 



Q Learning 

Convergence 

• Reward values have an upper bound. 

• Agent visits every possible state-action pair 

infinitely often.  

•   

Theorem: Q' will converge to Q, if:  

36 


