
Unsupervised Learning

Unsupervised vs Supervised Learning:

• Most of this course focuses on supervised learning methods
such as regression and classification.

• In that setting we observe both a set of features
X1, X2, . . . , Xp for each object, as well as a response or
outcome variable Y . The goal is then to predict Y using
X1, X2, . . . , Xp.

• Here we instead focus on unsupervised learning, we where
observe only the features X1, X2, . . . , Xp. We are not
interested in prediction, because we do not have an
associated response variable Y .
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The Goals of Unsupervised Learning

• The goal is to discover interesting things about the
measurements: is there an informative way to visualize the
data? Can we discover subgroups among the variables or
among the observations?

• We discuss two�problems:
• feature extraction, a tool used for data

visualization or data pre-processing before supervised
techniques are applied, and

• clustering, a broad class of methods for discovering
unknown subgroups in data.
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The Challenge of Unsupervised Learning

• Unsupervised learning is more subjective than supervised

learning, as there is no simple goal for the analysis, such as

prediction of a response.

• But techniques for unsupervised learning are of growing

importance in a number of fields:

• subgroups of breast cancer patients grouped by their gene

expression measurements,

• groups of shoppers characterized by their browsing and

purchase histories,

• movies grouped by the ratings assigned by movie viewers.
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Another advantage

• It is often easier to obtain unlabeled data — from a lab

instrument or a computer — than labeled data, which can

require human intervention.

• For example it is difficult to automatically assess the

overall sentiment of a movie review: is it favorable or not?
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Principal Components Analysis

• PCA produces a low-dimensional representation of a

dataset. It finds a sequence of linear combinations of the

variables that have maximal variance, and are mutually

uncorrelated.

• Apart from producing derived variables for use in

supervised learning problems, PCA also serves as a tool for

data visualization.
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Principal Components Analysis: details

• The first principal component of a set of features

X1, X2, . . . , Xp is the normalized linear combination of the

features

Z1 = φ11X1 + φ21X2 + . . .+ φp1Xp

that has the largest variance. By normalized, we mean that
?p

j=1
φ2

j1
= 1.

• We refer to the elements φ11, . . . , φp1 as the loadings of the

first principal component; together, the loadings make up

the principal component loading vector,

φ1 = (φ11 φ21 . . . φp1)
T .

• We constrain the loadings so that their sum of squares is

equal to one, since otherwise setting these elements to be

arbitrarily large in absolute value could result in an

arbitrarily large variance.
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PCA: example
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The population size (pop) and ad spending (ad) for 100 different

cities are shown as purple circles. The green solid line indicates

the first principal component direction, and the blue dashed

line indicates the second principal component direction.
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Computation of Principal Components

• Suppose we have a n× p data set X. Since we are only

interested in variance, we assume that each of the variables

in X has been centered to have mean zero (that is, the

column means of X are zero).

• We then look for the linear combination of the sample

feature values of the form

zi1 = φ11xi1 + φ21xi2 + . . .+ φp1xip (1)

for i = 1, . . . , n that has largest sample variance, subject to

the constraint that
?p

j=1
φ2

j1
= 1.

• Since each of the xij has mean zero, then so does zi1 (for

any values of φj1). Hence the sample variance of the zi1

can be written as
1

n

?
n

i=1
z2
i1
.
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Computation: continued

• Plugging in (1) the first principal component loading vector

solves the optimization problem

maximize
φ11,...,φp1

1

n

n?

i=1





p?

j=1

φj1xij





2

subject to

p?

j=1

φ
2

j1 = 1.

• This problem can be solved via a singular-value

decomposition of the matrix X, a standard technique in

linear algebra.

• We refer to Z1 as the first principal component, with

realized values z11, . . . , zn1
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Geometry of PCA

• The loading vector φ1 with elements φ11, φ21, . . . , φp1

defines a direction in feature space along which the data

vary the most.

• If we project the n data points x1, . . . , xn onto this

direction, the projected values are the principal component

scores z11, . . . , zn1 themselves.
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Further principal components

• The second principal component is the linear combination

of X1, . . . , Xp that has maximal variance among all linear

combinations that are uncorrelated with Z1.

• The second principal component scores z12, z22, . . . , zn2

take the form

zi2 = φ12xi1 + φ22xi2 + . . .+ φp2xip,

where φ2 is the second principal component loading vector,

with elements φ12, φ22, . . . , φp2.
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Further principal components: continued

• It turns out that constraining Z2 to be uncorrelated with

Z1 is equivalent to constraining the direction φ2 to be

orthogonal (perpendicular) to the direction φ1. And so on.

• The principal component directions φ1, φ2, φ3, . . . are the

ordered sequence of right singular vectors of the matrix X,

and the variances of the components are
1

n
times the

squares of the singular values. There are at most

min(n− 1, p) principal components.
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Illustration

• USAarrests data: For each of the fifty states in the United

States, the data set contains the number of arrests per

100, 000 residents for each of three crimes: Assault, Murder,

and Rape. We also record UrbanPop (the percent of the

population in each state living in urban areas).

• The principal component score vectors have length n = 50,

and the principal component loading vectors have length

p = 4.

• PCA was performed after standardizing each variable to

have mean zero and standard deviation one.
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USAarrests data: PCA plot
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Figure details

The first two principal components for the USArrests data.

• The blue state names represent the scores for the first two

principal components.

• The orange arrows indicate the first two principal

component loading vectors (with axes on the top and

right). For example, the loading for Rape on the first

component is 0.54, and its loading on the second principal

component 0.17 [the word Rape is centered at the point

(0.54, 0.17)].

• This figure is known as a biplot, because it displays both

the principal component scores and the principal

component loadings.
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PCA loadings

PC1 PC2

Murder 0.5358995 -0.4181809

Assault 0.5831836 -0.1879856

UrbanPop 0.2781909 0.8728062

Rape 0.5434321 0.1673186
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Another Interpretation of Principal Components
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PCA find the hyperplane closest to the observations

• The first principal component loading vector has a very

special property: it defines the line in p-dimensional space

that is closest to the n observations (using average squared

Euclidean distance as a measure of closeness)

• The notion of principal components as the dimensions that

are closest to the n observations extends beyond just the

first principal component.

• For instance, the first two principal components of a data

set span the plane that is closest to the n observations, in

terms of average squared Euclidean distance.
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Scaling of the variables matters

• If the variables are in different units, scaling each to have

standard deviation equal to one is recommended.

• If they are in the same units, you might or might not scale

the variables.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

First Principal Component

S
e

c
o

n
d

 P
ri

n
c
ip

a
l 
C

o
m

p
o

n
e

n
t

* *

*

*

*

**

*

*

*

*

*

*

**
*

* *

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

* *

*

*

*

*

*

*

*

*

−0.5 0.0 0.5

−
0

.5
0

.0
0

.5

Murder

Assault

UrbanPop

Rape

Scaled

−100 −50 0 50 100 150

−
1

0
0

−
5

0
0

5
0

1
0

0
1

5
0

First Principal Component

S
e

c
o

n
d

 P
ri

n
c
ip

a
l 
C

o
m

p
o

n
e

n
t

*
*

*

*

*
**

* *
*

*

*

*
*

*
*

*
*

*
*

*
**

*

*

*
*

*

*

*

*

*

*

*

*
* **

*

*
*

*

**

*

*
*

*

*
*

−0.5 0.0 0.5 1.0

−
0

.5
0

.0
0

.5
1

.0

Murder Assault

UrbanPop

Rape

Unscaled

19 / 52



Proportion Variance Explained

• To understand the strength of each component, we are

interested in knowing the proportion of variance explained

(PVE) by each one.

• The total variance present in a data set (assuming that the

variables have been centered to have mean zero) is defined

as
p?

j=1

Var(Xj) =

p?

j=1

1

n

n?

i=1

x
2

ij ,

and the variance explained by the mth principal

component is

Var(Zm) =
1

n

n?

i=1

z
2

im.

• It can be shown that
?p

j=1
Var(Xj) =

?
M

m=1
Var(Zm),

with M = min(n− 1, p).
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Proportion Variance Explained: continued

• Therefore, the PVE of the mth principal component is

given by the positive quantity between 0 and 1
?

n

i=1
z2
im?p

j=1

?
n

i=1
x2
ij

.

• The PVEs sum to one. We sometimes display the

cumulative PVEs.
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How many principal components should we use?

If we use principal components as a summary of our data, how

many components are sufficient?

• No simple answer to this question, as cross-validation is not

available for this purpose.

• Why not?

• When could we use cross-validation to select the number of

components?

• the “scree plot” on the previous slide can be used as a

guide: we look for an “elbow”.
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